Emerging Quantum Frustrated Magnets

Emerging Quantum Frustrated Magnets research head is Dr. Raivo Stern

Emerging Novel Phases in Strongly Frustrated Quantum Magnets (ENIQMA), PRG4

Project Duration: 01.01.18 – 31.12.22

Principal Investigator: Dr. Raivo Stern

Frustrated spin systems exhibit a variety of behaviors ranging from exotic ground states and novel types of magnetic excitations, to the enhanced magnetocaloric effect and multiferroicity, relevant for applications. A corollary of the vibrant research in this field are new frustrated materials, both bulk and films, that hold promise for novel phases, interesting physics, and potentially useful properties. We propose to perform comprehensive studies of these materials, from both experiment and theory, aiming to provide a realistic picture of their physics on both phenomenological and microscopic level. This combined approach gives us a rare opportunity to obtain novel experimental results, understand them within a suitable theoretical framework, and use this insight for the design of new materials. Our methods include low-temperature thermodynamic and microscopic(AFM-MFM)measurements, NMR and THz spectroscopy, neutron scattering, and DFT calculations combined with microscopic modeling.

Emerging Quantum Frustrated Magnets, PUT210

Project Duration: 01.01.13 – 31.12.16

Principal Investigator: Dr. Raivo Stern

Among complex systems with emergent behaviors, frustrated quantum magnets are coming to the forefront, as they are predicted to exhibit novel exotic phases of matter ranging from spin liquids and spin ice to topological insulators and phonon-glass electron-crystals. These collective states might play a fundamental role in future and emerging quantum technologies such as the synthesis of innovative materials for energy harnessing and storage, entanglement-enhanced sensing, and highly efficient quantum computation. The exponentially growing complexity of the Hamiltonians used to describe such systems prevents their efficient analytical study and numerical simulation. Moreover, direct verification in natural materials, sizable noise level, ubiquitous defects and impurities and the limited degree of experimental control is extremely demanding. We propose the combination of unique and efficient experimental techniques with microscopic theory to verify some promising novel quantum magnets.

Contact Information