Best chemical risk assessment professionals for maximum Ecosystem Services benefit – PRORISK, 1.04.2020−31.03.2024.

EC Horizon 2020, H2020-MSCA-ITN-2019-859891

Leader at NICPB: Dr. A. Kahru
Senior staff at NICPB: Dr. V. Aruoja, Dr. M. Heinlaan, Dr. I. Blinova
Beneficiaries: Masaryk University (Czech Republic), Stichting VU (Netherlands), Norwegian Institute for Water Research (Norway), University of Girona (Spain), National Institute of
Chemical Physics and Biophysics (Estonia), Spanish National Research Council – Center for Advanced Studies of Blanes (Spain), Aarhus University (Denmark), Sheffield University (United Kingdom), Technical University of Denmark (Denmark), Consulteco s.r.o. (Czech Republic), Environmental Institute s.r.o. (Slovak Republic)

Vision of PRORISK is to provide a unique value by creating a novel platform for training a network of Early Stage Researchers (ESRs) in the field of advanced Environmental Risk Assessment (ERA). ERA is nowadays rapidly changing from relying on simplified descriptive laboratory tests to incorporating mechanistic, ecological and socio-economic process information. This revolutionizes the risk assessment making it increasingly comprehensive, realistic and relevant, also under consideration of other modulating effects such as non-chemical stressors or impact of global change. ESRs in PRORISK will gain the abilities to address this major challenge in risk assessment paradigm shift. They will work as future experts at the interface between the key concepts of sustainable protection of ecosystems and health – i.e. adverse outcome pathways (AOPs) and ecosystem services. Young researchers within PRORISK will develop and integrate mechanistic understanding, in-depth analyses of chemical-biological interactions and exposure, and functioning of ecosystems. They will be able to tackle increasingly complex data. They also will be able to critically evaluate robustness of risk predictions and assess the socio-economic costs of environmental damage. PRORISK will allow the ESRs to develop the critical capability to synthesize processes across different levels of biological organization and different mechanistic, ecosystem and socio-economical concepts. This will empower ESRs to shape future regulatory missions protecting the ecosystems services and assuring thus sustainability of ecosystem services and prosperity long beyond the PRORISK project.

Center of Nanomaterials Technologies and Research (NAMUR+), 2017-2021.


Leader of the project: Tartu University (Dr. V. Kisand), partners: TTÜ (Dr. M. Kauk-Kuusik) and NICPB (Dr. A. Kahru),
NICPB main contributors: Dr. A. Ivask, Dr. K. Kasemets, Dr. I. Blinova

Aim of the project NAMUR+ is to establish the Estonian Research Infrastructures Roadmap object – an infrastructure/excellence centre for the nanomaterials research and development, and their safety assessment bringing together projects partners’ already exciting and in the future purchased high-technology equipment. The partners of NAMUR+ are Tartu University, Tallinn University of Technology and National Institute of Chemical Physics and Biophysics (Laboratory of Environmental Toxicology, leading partner for the nanomaterials safety assessment).

Antimicrobial chitosan-nanocomposites for biomedical applications: efficiency and safety, 2020-2024.

Personal Research Funding, PRG749

Leader: Dr. K. Kasemets

Nanotechnologies open new possibilities for the creation of efficient and safe antimicrobials for biomedical applications, e.g., wound-dressing materials and implants that enable to reduce/avoid microbial infections and the formation of antibiotic-resistant strains. We aim to create chitosan nanocomposites (CS-NCs) with dual synergistic properties by combining antimicrobial properties of Ag and CuO nanoparticles with immune-stimulating properties of chitosan. We (i) synthesize libraries of CS NCs, (ii) test their antimicrobial potency to pathogenic bacteria (Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa and Escherichia coli) and fungi (Candida sp), including antibiotic-resistant strains, (iii) evaluate safety to human fibroblasts, keratinocytes, endothelial cells and macrophages, and pro-inflammatory response in vitro, and (iv) link the biological effects with physicochemical properties of CS-NCs. Most optimal CS-NCs will be structurally analyzed with NMR and assessed for safety using the EpiDerm 3D in vitro skin model, to identify CS-NCs with the highest efficiency and minimum adverse side effects to human.

Technology-critical elements: potential ecotoxicological effects of application, 1.01.2020−31.12.2020.

Personal Research Funding,  PRG684

Leader: Dr. I. Blinova

The progress has always been related to the discovery and application of novel materials. However, the successful commercialization of innovative materials depends also on timely forecast of potential associated environmental risks, to avoid ecological and societal problems. Technology-critical elements (TCEs), including lanthanides, are crucial components in many high-tech technologies and due to unique properties their replacement by other elements is very difficult. TCEs are considered emerging contaminants as recent technological developments have resulted in accumulation of TCEs in the soil and water raising a concern on safe environmental levels of TCEs. However, there are large knowledge gaps on environmental fate and potential hazard of TCEs to ecosystems. The goal of the current project is to obtain new scientific knowledge on the potential ecological consequences of elevated concentrations of TCEs (focusing on lanthanides)in the environment.


Nanocomposite Engineered Particles for Phosphorus Recovery and Toxicological Risk Assessment for the Aquatic Environment, 1.09.2020−31.12.2022


Vastutav täitja: Dr. A. Drenkova-Tuhtan
Juhendaja KBFIs: Dr. A. Kahru
Osalejad KBFIs: MSc H. Vija, Dr V. Auoja, Dr M. Sihtmäe, Dr I. Blinova

Phosphorus (P) is an essential nutrient and a key element for agriculture and global food security. Phosphate rock, however, is a finite resource included in the list of critical raw materials for the European Union. Moreover, the remaining reserves have an increasing content of toxic impurities and are concentrated only in a few countries worldwide, leading to a strong import dependency for the nations with resource deficits. Nevertheless, large quantities of phosphorus are present in wastewater and agricultural runoff, representing an untapped secondary source of the valuable nutrient. Engineered nanostructured materials, predominantly metal oxide/hydroxide particles, have been frequently reported as excellent adsorbents for phosphorus in wastewater. However, the uncertainty regarding possible ecotoxicological hazards arising from the application of these materials has opened new research gaps. The main goal of the EU-funded project NanoPhosTox is to test the ecological impact of several promising new nanocomposite P-absorbent particles and optimize their composition to exclude any environmental risks. The potential ecotoxicological hazards will be assessed following OECD and ISO test protocols for ecotoxicity, such as Vibrio fischeri, Algae and Daphnia assays. Ensuring that the materials and their precursors are environmentally friendly will help progress towards commercial application of these promising new P-adsorbents.

Novel antimicrobial surface coatings, 1.01.2020−31.12.2020

Proof-of-concept grant, EAG20

Principal investigator: Dr. Vambola Kisand (University of Tartu)
NICPB contributor: Dr. A. Ivask

The aim of the present project is to develop further the technology of manufacturing antimicrobial coatings based on ZnO/Ag nanocomposite particles. First of all, such coatings are planned to be applied in hospitals as well as in public spaces on high-touch surfaces, which would also be exposed to UV-A or solar radiation at some stage. Compared to the products already on the market, the advantage of our solution is three simultaneously acting functionalities: zinc ions, silver ions and reactive oxygen radicals. In addition, on such coatings organic residues from dead microbes are photocatalytically decomposed. During this project, we plan to validate the ZnO/Ag nanocomposite material surface fixation and also to test wearability, stability and antimicrobial efficacy of the surfaces in real-life conditions. According to our previous experience, Estonian companies are interested in such antimicrobial coatings, but our current low technology readiness level has hindered the collaboration.

Assessment of hazard of UV weathered microplastics in aquatic environment (UV-PLASTOX) , 2020-2022.

Mobilitas Pluss Postdoctoral Researcher Grant, project MOBJD509

Leader: Dr. A. Khosrovyan

The adverse effect of the microplastic (< 5 mm) pollution on environment is increasingly acknowledged with oceans and surface waters as most concerned compartments. Warningly, there are big ‘ecotoxicological’ knowledge gaps concerning: (i) the impact of UV-weathering on water leachable toxicity of ‘conventional’ and biodegradable microplastic ; (ii) long-term toxic effects for planktonic vs benthic organisms and (iii) the effect of nanoplastic. In this project we will adapt a novel method introduced by EU JP Oceans project WEATHER MIC for evaluation of UV-facilitated water leachable toxicity of microplastic to our Laboratory conditions and apply that also for biodegradable microplastic. Thus, we will generate new data on the potential ecotoxicological effects of different sizes and types of UV-weathered microplastic to selected fresh and marine water planktonic and benthic organisms. Connection between the toxic effects and chemical composition of the leachates will be searched.

Response of algal communities to toxicants with different modes of action, 2019-2022.

Start-up grant PSG311

Leader: Dr. V. Aruoja

The aquatic risk assessment of existing and emerging pollutants is mainly based on toxicity assays using artificial culture media and one species at a time. While such experiments are useful for comparisons of chemicals, the results are difficult to apply in real life situations with complex matrices and multi-species exposures. The relevance of aquatic toxicity assays can be improved by using media based on natural water and a community of species instead of one. This is already employed in the mainstream of ecology that deals with biodiversity, functional diversity and resistance of communities to external stress. The current proposal combines the two fields providing a more realistic approach to environmental effects of three major classes of toxicants with different modes of action: organic chemicals, pesticides and nanoparticles.

Opportunities for mitigation of bee losses (ForBee), 2019-2021.


Lead partner: Eesti Maaülikool (Dr. M. Mänd, Dr. A. Viltrop); partners: TÜ (Dr. V. Sõber) and NICPB (Dr. A. Kahru)
NICPB main contributor: Dr. I. Blinova, Dr.  A. Lukjanova, Dr. M. Sihtmäe

Pollinators are vital for natural and agricultural ecosystems. Yet, recent trends indicate declines in their numbers and species richness. This decline is due to multiple stressors acting in parallel and synergizing the effects of each other. Moreover, each region carries its specific characteristics and stressors, creating the need for a region-based approach. The project ‘Opportunities for mitigation of bee losses’ will generate recommendations for efficient conservation as well as beekeeping measures. The new scientific knowledge gained by the project allows us to fill existing data gaps and provide optimal measures to mitigate bee losses in Estonia. The project will create the Project Network; evaluate the effects of habitat- and landscape-level factors affecting pollinators; analyse existing veterinary problems and toxic compounds relevant to Estonian conditions; analyse the severity of existing stressor and generate protocols for policymakers to mitigate the effects.

Nanoparticle-macrophage interactions in vitro: Focus on nanosafety, 2016-2021.

Personal Research Funding, PUT1015

Leader: Dr. O. Bondarenko

Nanoparticles (NPs) offer unique properties for biomedical applications. Therapeutic use of NPs implies their administration into bloodstream, where NPs inevitably come into contact with the immune cells and pose immunotoxicity concerns. Macrophages are phagocytizing immune cells that directly interact with NPs and can be used as in vitro model to study possible immunotoxic effects of NPs. The main aim of this proposal is to reveal physico-chemical properties of NPs that can be modified to reduce NP toxicity to human macrophages, without compromising their beneficial function(s). Medically perspective Fe, Ag and CuO NPs and their novel modifications were selected for the study, aiming to link chemical composition, size and surface coating of NPs to their in vitro effects in macrophages, focusing on toxicity mechanisms and immune responses. As the main output, we will provide novel structure-related immunotoxicity information for NPs that is crucial for biomedical applications.

Evaluation of the potential hazardous effects of microplastic to marine and freshwater zooplankton, 2017-2021.

Personal Research Funding, PUT1512

Leader: Dr. M. Heinlaan

Microplastic (MP) waste (particles ≤ 5 mm) in the waterbodies is accumulating rapidly yet the current knowledge and scientific proof on the potential consequences of this pollution is not sufficient to choose the most effective countermeasures to fight this problem. The main objective of the current project is to evaluate the hazardous effects of of MP on marine and freshwater zooplankton – the base of aquatic food-webs. For that, we will perform hazard assessment of different particle types of the most wide-spread low-density polymers. Special focus will be on linking the particle properties to the observed effects, mapping the sub-lethal effects as early warnings of instability of the aquatic populations in the long-run and evaluating the MP role as the co-contaminant carrier. As the main outcome, novel information, data and hazard assessment protocols will be provided for better understanding the MP waste problem and application for regulatory and further research purposes.

Functional Glyconanomaterials for the Development of Diagnostics and Targeted Therapeutic Probes (GLYCONanoPROBES), 2019-2023.

COST CA18132

MC member: Dr. K. Kasemets

Rohkem infot COST-ist.

European Network of Vaccine Adjuvants, 2017-2021.

COST CA16231

MC member: Dr. O. Bondarenko

More information from COST.

Anti-Microbial Coating Innovations to prevent infectious diseases (AMICI), 2016-2020.

COST CA15114

MC members: Dr. A. Kahru, Dr. K. Kasemets

More information from COST.

Contact Information