Spin Dynamics and Symmetry Transitions in Cr₂O₃ Probed by NMR A. Boldin¹, I. Heinmaa¹, J. Link¹, R. Cong², R. Stern¹ ¹KBFI (NICPB), Estonia ²National High Magnetic Field Laboratory, Florida State University, USA ## **Abstract:** al.boldin@gmail.com Chromium(III) oxide (Cr_2O_3) is the prototypical magnetoelectric antiferromagnet, known for its linear magnetoelectric (ME) effect and symmetry-governed spin phenomena. We present a comprehensive 53 Cr NMR study of Cr_2O_3 , combining field- and temperature-dependent measurements to investigate spin-lattice relaxation, spontaneous sublattice magnetisation, and symmetry evolution across the spin-flop transition. NMR spectra reveal a first-order spin-flop transition at $B_{SF} \approx 6.7$ T, marked by a collapse of quadrupolar triplets into magnetic doublets. Angular-dependent NMR measurements in the flop phase show sinusoidal frequency shifts and cosine-like FWHM variation, consistent with coherent in-plane spin canting and domain-selective magnetic anisotropy. These features support a symmetry reduction from magnetic point group $^{-3}m'$ to 2'/m. Spin-lattice relaxation rate $(1/T_1)$ measurements across a wide temperature range reveal three distinct regimes: (1) activated BPP behavior below 15 K ($\tau_0 \approx 9$ ns, $E_a \approx 0.56$ meV), (2) a power-law regime ($n \approx 2.3$) dominated by two-magnon Raman scattering, and (3) critical slowing down near $T_N \approx 308$ K with $n \approx 4$. A pronounced relaxation peak near 8 K, invariant in position but suppressed in magnitude under field, suggests low-energy dynamic contributions from domain walls or transverse modes. Zero-field NMR shifts directly track the internal hyperfine field and show continuous suppression of spontaneous magnetisation approaching T_N . Quadrupolar splitting and line width remain stable, implying minimal structural contributions to the magnetic evolution. These results establish 53 Cr NMR as a sensitive local probe of spin symmetry, magnetic domains, and low-energy excitations in Cr_2O_3 , bridging classic magnetoelectric theory with modern spintronic and multipolar perspectives. ## **Selected References** - 1. Dzyaloshinskii, I. E. Sov. Phys. JETP **10**, 628 (1959). - 2. Astrov, D. N. Sov. Phys. JETP 11, 708 (1960). - 3. Fiebig, M. et al. *Nature* **419**, 818–820 (2005). - 4. Foner, S. *Phys. Rev.* **130**, 183–197 (1963). - 5. Rado, G. T., Folen, V. J. Phys. Rev. Lett. 7, 310–311 (1961).