Aerobic Oxidation of Cyclopentane-1,2-diols to Cyclopentane-1,2-diones on Pt/C Catalyst

Indrek Reile, ^a Anne Paju, ^a Margus Eek, ^b Tõnis Pehk, ^c Margus Lopp*^a

- ^a Department of Chemistry, Faculty of Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia Fax +372(620)2828; E-mail: lopp@chemnet.ee
- ^b Prosyntest Ltd, Akadeemia tee 15, 12618 Tallinn, Estonia
- ^c National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia *Received 5 October 2007*

Abstract: A new method for the aerobic oxidation of cyclopentane-1,2-diols to corresponding 1,2-diones using heterogeneous Pt/C catalyst in the presence of LiOH is described. Different functional groups tolerate the oxidation conditions. Yields of 1,2-diones up to 76% were achieved.

Key words: diols, ketones, heterogeneous catalysis, oxidation, platinum

Catalytic dehydrogenation is a common method for the oxidation of alcohols to ketones. The use of atmospheric air oxygen as an oxidant is preferred due to its 'green' nature. The first reports on the platinum-metal-catalyzed aerobic oxidations of alcohols date back to the seventies. Since then a variety of such oxidation methods have been developed for the conversion of allylic and benzylic alcohols, as well as of nonactivated primary and secondary aliphatic alcohols, into carbonyl compounds. Both, the homogeneous catalysis using metal complexes in organic solvents² or in water³ and the heterogeneous catalysis using easily recoverable traditional catalysts⁴ or metal nanoparticles⁵ are used. Oxidation has been carried out in different solvents: common organic solvents, 5a,6 water, 4a,5b and supercritical carbon dioxide.

There are only a few methods for oxidizing diols to diones^{6b,8} and no methods for the catalytic aerobic oxidation of cyclopentane-1,2-diols to the corresponding 1,2-diketones available in literature. Cyclopentane-1,2-diones were of interest to us as substrates for the asymmetric

domino oxidation, leading to tertiary hydroxyketones and lactone acids,⁹ which are useful as the building blocks for natural compounds.¹⁰

In the present paper we reveal our results on a new method of aerobic oxidation of vicinal cyclopentane diols to 1,2-diketones using a heterogeneous Pt/C catalyst (Scheme 1).

We have found that aerobic oxidation on a commercially available Pt/C catalyst¹¹ at 60 °C converts *cis*-1,2-diols **1** into the corresponding 1,2-diones **3**. In our preliminary experiments toluene was used as a solvent for hydrophobic substrates, water for hydrophilic substrates, and a mixture of MeCN and H₂O as a universal medium for both types of substrates. In these cases some amount of hydroxyketone **2** was also isolated, indicating that the oxidation occurred in the succession: diol – hydroxyketone – dione. In the case of **1a** intermediate hydroxy ketone **2a** was isolated and identified by NMR. Presence of a minor amount of the regioisomeric hydroxy ketone **2a'** was also observed in the spectrum.

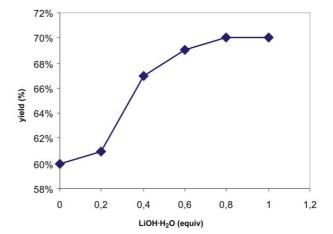
The process is strongly dependent on the amount of oxygen available to the reaction medium. We established that the amount of oxygen that was present in the solvent and in the catalyst converts approximately 30% of the substrate into the product. Therefore, additional oxygen is needed to complete the process. On the other hand, unrestricted access of air to the reaction system lowers the yield of the product, presumably by overoxidizing the

$$R = a \ \text{CH}_2\text{CH}_2\text{OB} \\ b \ \text{CH}_2\text{CH}_2\text{OH} \\ c \ \text{Me} \\ d \ \text{CH}_2\text{COOt-C}_5\text{H}_{11} \\ e \ \text{CH}_2\text{CONH}_2 \\ \text{G} \ \text{CH}_2\text{CONH}_2 \\ \\ \text$$

Scheme 1

348 I. Reile et al. LETTER

product to carboxylic acids. 8b Thus, better results were obtained when the reactor was periodically flushed with fresh air (in ca. 4 h intervals) during 16–20 hours. Using this procedure with 10 mol% of Pt/C catalyst, the oxidation of diol **1a** resulted in 76% of dione **3a** in toluene and 66% in acetonitrile—water mixture (1:1), the oxidation of diol **1c** resulted in dione **3c** in 67% in water. It should be noted that solubility of oxygen in these media is different (8.7 mM in toluene and 8.1 mM in acetonitrile compared to 1.3 mM in water at 20 °C¹²). We may suggest that the amount of oxygen in water-containing solvents is not sufficient for the reaction that slightly reduces the yield.


There is a slight difference in the reactivity of *all-cis* and *cis*-diol-*trans*-alkyl compounds. In the case of **1d** we observed that *cis*-diol-*trans*-alkyl compounds react slower.

Inorganic base additives to the oxidation system have been recommended by Bäckvall for heterogeneous catalytic dehydrogenations¹³ and Mueller et al. for aerobic oxidations.¹⁴ In our case the addition of alkali significantly influenced the process by considerably increasing the reaction rate. This enabled us to reduce the amount of catalyst to 5 mol%. It is noteworthy that in the presence of base hydroxyketone 2 was no longer detected among the reaction products. Thus, in acetonitrile-water without alkali, the yields of 2a and 3a were 16% and 60%, respectively, within 16 hours, while in the presence of one equivalent of alkali the only reaction product was 3a in 70% yield within four hours. We may suggest that in the presence of alkali the conversion of 2 into 3 is faster than the conversion of 1 into 2. In the presence of base the process was also less sensitive to the oxygen concentration. A part of this effect can probably be caused by the complex nature of the oxidation process, as discussed by Steinoff and Stahl. 12b By adding LiOH we achieved a stable process in acetonitrile-water when access of atmospheric air was not restricted.

In order to establish the necessary amount of alkali, substrate **1a** was oxidized in a 1:1 mixture of acetonitrile—water in the presence of different amounts of LiOH. The obtained results are presented in Figure 1. We can note that already starting from 0.5 equivalent of LiOH the yields of the isolated product are close to maximum (ca. 70%).

Using a reactor with unrestricted air access through an open condenser, acetonitrile—water (1:1) as a solvent and LiOH as an additive, we performed the aerobic oxidation of alkyl, substituted alkyl, and aryl diols $\mathbf{1a} - \mathbf{g}^{15}$ on the Pt/C catalyst. The obtained results are presented in Table 1.¹⁶

In most cases 1,2-diones 3^{17} were obtained in good yield (around 70%). There are some exceptions: hydroxyalkyl substrate with unprotected OH group 1b resulted in a modest yield of 3b (49%, Table 1, entry 6). It is also noteworthy that only the secondary OH groups of the substrate were oxidized leaving the primary alcohol group untouched. The oxidation of *tert*-amylcarbonyloxy diol (1d) proceeded quickly over about one hour, until a yield of 3d of 28% was reached and then the reaction stopped

Figure 1 The effect of different amounts of LiOH·H₂O on the isolated yield of **3a**. *Reaction conditions*: MeCN–H₂O (1:1); 60 °C; 4 h; 5 mol% Pt/C catalyst.

 $\begin{tabular}{ll} \textbf{Table 1} & Aerobic Oxidation of diols 1 to diones 3 in the Presence of Pt/C Catalyst \\ \end{tabular}$

Entry ^a	Substrate	LiOH (equiv)	Time (h)	Yield (%)
1	1a	0.2	4	61
2 ^b	1a	0.4	4	67
3	1a	0.6	4	69
4	1a	1.0	4	70
5°	1a	1.0	4	68
6	1b	1.0	5	49
7	1c	1.0	5	74
8	1d	1.0	1.3	28
9	1e	1.0	4	76
10	1f	1.0	3.5	69
11	1g	1.0	3	0

^a All experiments were run at 60 °C with 5 mol% Pt/C catalyst in an open glass reactor equipped with a condenser. MeCN-H₂O (1:1) used as solvent unless stated otherwise.

(Table 1, entry 8); diol **1g**, which bears an amido group, did not afford the expected dione **3g**. At the same time Boc-aminoalkyl substrate **1e** resulted in the best isolated yield of dione **3e** (76%, Table 1, entry 9). In all these cases no hydroxyketone intermediates **2** were observed.

When the catalyst was filtered from the reaction mixture and reused for the oxidation of diol **1a**, only a minor decrease in the yield was observed and the product dione **3a** was isolated in 68% yield (Table 1, entry 5). Thus the catalyst can be reused at least once without noticeable decrease in the catalyst activity and the TON for a batch remains approximately 14.

^b In toluene.

^c Regenerated catalyst used in the experiment.

We may conclude that a new, safe, and easy to use Pt/C catalytic aerobic oxidation method for the oxidation of cyclopentane-1,2-diols to the corresponding 1,2-diones was developed. The method is viable in the presence of a variety of functional groups, including benzyl ethers, alkyl-, Boc-amino-, hydroxyl-, and phenyl groups. A wide choice of solvents ranging from toluene to water—acetonitrile mixture to water makes it possible to oxidize many other substrates by this method.

Acknowledgment

We are grateful to the Estonian Ministry of Education and Research (Grant No: 0142725s06), Estonian Science Foundation (Grant No: 5628 and 6778) and ProSyntest Ltd for support and Prof. Jan E. Bäckvall for helpful suggestions.

References and Notes

- (1) Blackburn, T. F.; Schwartz, J. J. Chem. Soc., Chem. Commun. 1977, 157.
- (2) (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. *J. Org. Chem.* 1999, 64, 6750. (b) Hallmann, K.; Moberg, C. *Adv. Synth. Catal.* 2001, 343, 260. (c) Schultz, M. J.; Park, C. C.; Sigman, M. S. *Chem. Commun.* 2002, 3034. (d) Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. *Angew. Chem. Int. Ed.* 2003, 42, 3810. (e) Iwasava, T.; Tokunaga, M.; Obora, Y.; Tsuji, Y. *J. Am. Chem. Soc.* 2004, 126, 6554. (f) Schultz, M. J.; Hamilton, S. S.; Jensen, D. R.; Sigman, M. S. *J. Org. Chem.* 2005, 70, 3343. (g) Steinhoff, B. A.; King, A. E.; Stahl, S. S. *J. Org. Chem.* 2006, 71, 1861.
- (3) (a) ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 1636. (b) Buffin, B. P.; Clarkson, J. P.; Belitz, N. L.; Kundu, A. J. Mol. Catal. A: Chem. 2005, 225, 111
- (4) (a) Jia, C.-G.; Jing, F.-Y.; Hu, W.-D.; Huang, M.-Y.; Jiang, Y.-Y. J. Mol. Catal. 1994, 91, 139. (b) Stuchinskaya, T. L.; Musawir, M.; Kozhevnikova, E. F.; Kozhevnikov, I. V. J. Catal. 2005, 231, 41.
- (5) (a) Karimi, B.; Abedi, S.; Clark, J. H.; Budarin, V. Angew. Chem. Int. Ed. 2006, 45, 4776. (b) Yamada, Y. M. A.; Arakawa, T.; Hocke, H.; Uozumi, Y. Angew. Chem. Int. Ed. 2007, 46, 704.
- (6) (a) Kakiuchi, N.; Maeda, Y.; Nishimura, T.; Uemura, S. *J. Org. Chem.* 2001, 66, 6620. (b) Yamaguchi, K.; Mizuno, N. *Chem. Eur. J.* 2003, 9, 4353. (c) Karimi, B.; Zamani, A.; Clark, J. H. *Organometallics* 2005, 24, 4695.
- (7) Steele, A. M.; Zhu, J.; Tsang, S. C. Catal. Lett. 2001, 73, 9.
- (8) (a) Iwahama, T.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. *Tetrahedron Lett.* **1995**, *36*, 6923. (b) Iwahama, T.; Yoshino, Y.; Keitoku, T.; Sakaguci, S.; Ishii, Y. *J. Org. Chem.* **2000**, *65*, 6502.
- (9) (a) Paju, A.; Kanger, T.; Pehk, T.; Müürisepp, A.-M.; Lopp, M. Tetrahedron: Asymmetry 2002, 13, 2439. (b) Paju, A.; Laos, M.; Jõgi, A.; Päri, M.; Jäälaid, R.; Pehk, T.; Kanger, T.; Lopp, M. Tetrahedron Lett. 2006, 47, 4491.
- (10) Paju, A.; Kanger, T.; Pehk, T.; Eek, M.; Lopp, M. Tetrahedron **2004**, 60, 9081.
- (11) Johnson Matthey, 5% Platinum Charcoal Catalyst Type 160, 57.9% H₂O.
- (12) (a) Perry, R. H.; Green, D. W.; Maloney, J. O. Perry's Chemical Engineers' Handbook, Seventh Edition; McGraw-Hill: New York, 1997. (b) Steinhoff, B. A.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 4348.

- (13) Bäckvall, J.-E. Modern Oxidation Methods; John Wiley and Sons: New York, 2004, 87.
- (14) Mueller, J. A.; Sigman, M. S. J. Am. Chem. Soc. 2003, 125, 7005.

(15) Preparation of Substrates

(a) Substrates **1a,b** and **1d–f** were prepared from the corresponding alkenes according to the following dihydroxylation procedure: Alkene was dissolved in a H₂Ot-BuOH mixture (1:3), and NMO (1.3 equiv) and fiber bound OsO₄ catalyst (0.1 mol%) were added. The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for an appropriate time (the reaction was monitored by TLC), the catalyst filtered, rinsed with EtOAc, and the filtrate quenched with an aqueous solution of $Na_2S_2O_3$ (10%). The aqueous layer was extracted with EtOAc, the organic extracts combined, dried over MgSO₄, the solvent evaporated and the crude product purified by flash chromatography, to afford the corresponding diol. Due to the synthetic route always the cis-diol was obtained as two isomers at the 3-position and used as a mixture. (b) Diol 1c is a commercial product¹⁸ and was used without purification. (c) Alkenes preceding diols 1a and 1b were prepared from 2-cyclopentene-1-acetic acid. 9a (d) The alkene preceding diol 1d was prepared from 2-cyclopentene-1-acetic acid ethyl ester by transesterification, as reported by: Frei, U.; Kirchmayr, R. EP 0278914, 1988. (e) Alkenes preceding diols 1e and 1g were prepared from 2-cyclopentene-1-acetic acid according to: Bertrand, M. B.; Wolfe, J. P. Tetrahedron 2005, 61, 6447. (f) The alkene preceding diol 1f was prepared according to: Büchner, I. K.; Metz, P. Tetrahedron Lett. 2001, 42, 5381.

(16) General Procedure for the Catalytic Aerobic Oxidation of Diols

Diol (0.424 mmol), catalyst (5 mol%), LiOH·H $_2$ O (1.0 equiv) and solvent [2 mL, MeCN–H $_2$ O (1:1)] were added to a 10 mL glass reactor, equipped with a condenser and stirred at 60 °C for an appropriate time. Consumption of the substrate was monitored by TLC. When the substrate was consumed the catalyst was filtered, rinsed with EtOAc (15 mL), EtOAc (10 mL) was added and the obtained two-phase solution was washed with 0.025 M HCl aq soln (20 mL). The separated aqueous layer was extracted once with EtOAc (20 mL). The combined extracts were dried over MgSO $_4$ and concentrated in vacuum. The solid crude product was purified by flash chromatography [EtOAc–PE (2.5:10)] to give the diketone as a white crystalline solid.

(17) All products have been fully characterized by ¹H NMR and ¹³C NMR. The analyses of known compounds are in agreement with published data. The characteristics of compounds are as follows: Compound 2a: ¹H NMR (800 MHz, CDCl₃): δ = 7.48 (m, 4 H, Bn *o*-, *m*-), 7.43 (m, 1 H, Bn *p*-), 4.67 and 4.65 (2d,

H, Bn o-, m-), 7.43 (m, 1 H, Bn p-), 4.67 and 4.65 (2d, $J = 11.8 \text{ Hz}, 2 \text{ H}, \text{Bn CH}_2\text{O}, 3.74 \text{ (dd}, J = 1.8, 10.9 \text{ Hz}, 1 \text{ H},$ H-2), 3.69 (td, $J = 2 \times 5.0$, 9.6 Hz, 1 H, H-7), 3.65 (ddd, $J = 4.5, 8.5, 9.6 \text{ Hz}, 1 \text{ H}, \text{H}-7), 2.41 \text{ (ddddd}, } J = 0.6, 1.4, 1.9,$ 9.2, 19.6 Hz, 1 H, H-5), 2.20 (dddd, J = 0.4, 9.6, 11.0, 19.6 Hz, 1 H, H-5), 2.09 (ddddd, J = 0.5, 1.4, 6.2, 9.6, 13.1 Hz, 1 H, H-4), 1.97 (m, 2 H, H-3,6), 1.86 (m, 1 H, H-6), 1.51 (dddd, J = 9.1, 11.0, 11.6, 13.1 Hz, 1 H, H-4). ¹³C NMR (125) MHz, CDCl₃): δ = 216.4 (C-1), 137.6 (C-9), 128.3 (C-11), 127.7 (C-10, C-12), 81.1 (C-2), 73.1 (C-8), 68.9 (C-7), 42.5 (C-3), 34.2 (C-6), 34.0 (C-5), 23.3 (C-4). This structure was confirmed by 2D FT correlation diagrams and ¹H–¹H coupling constants from H-2 and H-5 (19.6 Hz geminal coupling). The assignment of trans-configuration results from the comparison of ¹³C chemical shifts with cis- and and trans-isomers of 3-[2-(benzyloxy)ethyl]cyclopentane-cis-1,2-diol.

350 I. Reile et al. LETTER

Compound **2a**′: ¹H NMR (500 MHz, CDCl₃): δ = 7.28–7.34 (m, 5 H, Bn o-, m-, p-), 4.46 (s, 2 H, H-8), 4.01 (tdd, J = 2 × 0.5, 8.3, 11.8 Hz, 1 H, H-5), 3.57 and 3.54 (m, 2 H, H-7), 2.37 and 1.60 (m, 2 H, H-4), 2.30 (m, 1 H, H-2), 2.15 and 1.49 (m, 2 H, H-3), 2.02 and 1.75 (m, 2 H, H-6). ¹³C NMR (125 MHz, CDCl₃): δ = 219.6 (C-1), 138.1 (C-9), 128.2 (C-11), 127.4 (C-10, C-12), 75.5 (C-5), 72.7 (C-8), 67.3 (C-7), 43.3 (C-2), 30.2 (C-6), 29.3 (C-4), 22.9 (C-3). Large coupling constants of C-5 carbinol proton point to a methylene group bonded to C-5.

Compound **3a**: data available in ref. 9a. Compound **3b**: data available in ref. 9a. Compound **3c**: data are in accordance with commercial compound purchased from Aldrich. Compound **3d**: ¹H NMR (500 MHz, CDCl₃): $\delta = 6.85$ (s, 1 H, OH), 3.38 (s, 2 H, CH₂CO), 2.53 (m, 2 H, H-5), 2.43 (m, 2 H, H-4), 1.75 (q, J = 7.3 Hz, 2 H, CH_2 CH₃), 1.42 (s, 6 H, (CH₃)₂, 0.86 (t, J = 7.3 Hz, 3 H, CH_2 CH₃). ¹³C NMR (125 MHz, CDCl₃): $\delta = 203.16$ (C-3), 168.80 (COO), 150.04 (C-

2), 138.61 (C-1), 84.24 [OC(Me)₂], 35.42 (CH₂CO), 33.36 (CH₂CH₃), 32.01 (C-4), 25.36 [OC Me_2 and C-5], 8.09 (CH₃CH₂). IR: ν = 3315, 2979, 2937, 2885, 1727, 1699, 1665, 1465, 1386, 1193, 1149 cm⁻¹. Compound **3e**: ¹H NMR [500 MHz, CDCl₃, broadened spectrum (E/Z exchange of Boc)]: δ = 6.40 (br s, 1 H, OH), 4.89 (br s, 1 H, NH), 3.41 (br m, 2 H, H-7), 2.59 (t, J = 2 × 6.6 Hz, 2 H, H-6), 2.47 (br m, 2 H, H-5), 2.41 (br m, 2 H, H-4), 1.41 (br s, 9 H, H-11). ¹³C NMR (125 MHz, CDCl₃): δ = 203.21 (C-3), 155.96 (C-9), 149.57 (C-2), 144.18 (C-1), 79.33 (C-10), 37.82 (C-7), 31.90 (C-4), 29.88 (C-6), 28.32 (C-11), 25.51 (C-5). IR: ν = 3371, 3326, 3008, 1689, 1657, 1524, 1451, 1393, 1367, 1249, 1169, 1119 cm⁻¹. Compound **3f**: Ramage, R.; Griffiths, G. J.; Shutt, F. E. J. Chem. Soc., Perkin Trans. 1 **1984**, 7, 1531.

(18) 3-Methylcyclopentane-1,2-diol was purchased from Alfa Aesar as a mixture of diastereomers, 95%.