

Tetrahedron 60 (2004) 9081-9084

Tetrahedron

A short enantioselective synthesis of homocitric acid- γ -lactone and 4-hydroxy-homocitric acid- γ -lactones

Anne Paju, a Tonis Kanger, Tonis Pehk, Margus Eek and Margus Loppa,*

^aDepartment of Chemistry, Faculty of Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia ^bNational Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia ^cProsyntest Ltd, Akadeemia tee 15, 12618 Tallinn, Estonia

Received 27 May 2004; revised 12 July 2004; accepted 28 July 2004

Available online 26 August 2004

Abstract—A simple method for the synthesis of enantiopure homocitric acid γ -lactone and its 4-hydroxy analogues starting from spiro- γ -dilactone, in up to 74% isolated yield is described. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

(—)-R-Homocitrate is an intermediate in lysine biosynthesis pathway in yeast and some fungi. 1—4 This pathway is absent in plants and mammalians. That feature makes (—)-R-homocitrate and various citric acid derivatives promising candidates for anti-fungi therapy in human medicine, and prospective anti-fungi agents for crop protection in agriculture. The list of new antifungal citrates is far from being exhausted. 5 Additionally, chiral hydroxy acids are known as useful chiral synthons, ligands and auxiliaries in asymmetric organic synthesis. 6

Maragoudakis and Strassmann accomplished the first synthesis of racemic homocitrate in 1966.⁷ In the same year, enantioenriched *S*-homocitric acid was synthesized from (—)-quinic acid.⁸ In the late nineties, interest towards homocitric acid increased again and it was synthesized from L-lactic acid and L-serine,⁹ citric acid,¹⁰ monoethyl malonate¹¹ and D-Na-malate.¹²

To the best of our knowledge, the 4-hydroxy derivatives of homocitric acid have not been found from natural sources yet, and have not been synthesized before. However, the corresponding isomers of hydroxycitric acids, (2S,3S)- and (2S,3R)-2-hydroxycitric acid and their derivatives are extensively distributed in nature and are present in plants. ^{13,14} Several reports pertaining to the pharmaceutical applications of these compounds are available. ^{15–17} All of

Keywords: Asymmetric oxidation; Spirodilactone; Homocitric acid; γ -Lactone; 4-Hydroxy-homocitric acid; γ -Lactone.

the above mentioned reasons make the search for new synthetic methods of chiral citrates, their derivatives and analogues an important goal for synthetic chemists.

Asymmetric oxidation of ketones is a challenging option in the synthesis of enantioenriched compounds. 18,19 We have previously found that 3-substituted cyclopentane-1,2-diones can be oxidized with $\text{Ti}(\text{O}i\text{-Pr})_4/(+)$ -diethyl tartrate/tert-BuOOH complex (Sharpless complex), 20 resulting in enantiopure 2-alkyl- γ -lactone acids in the case of alkyl-substituted diketones $^{21-23}$ and spirodilactones 2 in the case of hydroxyethyl substituted diketones $^{1.24}$ These stable compounds can be used as key intermediates in many transformations. (Scheme 1).

Scheme 1.

In the present paper we demonstrate how the derivatives of hexanetriacid can be obtained starting from spirodilactone 2 according to a simple and efficient scheme (Scheme 2).

2. Results and discussion.

2.1. Preparation of homocitric acid-γ-lactone

Homocitric acid-γ-lactone was synthesized starting from

^{*} Corresponding author. Tel.: +372 6202 808; fax: +372 6547 520; e-mail: lopp@chemnet.ee

Scheme 2.

spirodilactone (*R*)-2a (2a was obtained from asymmetric oxidation of 3-hydroxyethyl-cyclopentane-1,2-dione according the described procedure²⁴). We first made an attempt to convert spirodilactone 2a into a diester 3a (path (a), Scheme 3). However, *trans*-esterification of 2a with methanol under basic conditions (NaHCO₃, K₂CO₃ or NaOMe) resulted in a 3:7 ratio of diester 3a and lactone ester 4a (in a 94% overall yield). The same mixture was obtained when one of the reaction products—lactone ester 4a—was treated with methanol. Diester 3a and lactone ester 4a are easily separable from each other on silica gel. Jones oxidation of the separated diester 3a followed by hydrolysis and acidification, resulted in (*R*)-homocitric acid-γ-lactone 5a in 46% yield for two steps.

The moderate yield of **3a** from the *trans*-esterification procedure forced us to find alternatives. So, we tried a direct oxidation of spirodilactone **2a** in a form a diacid Na—or K-salt. Indeed, using simple reagents like KMnO₄ or $K_2S_2O_8$ (with RuCl₃×H₂O as a catalyst)²⁵ in basic medium afforded (*R*)-(–)-homocitric acid- γ -lactone *R*-**5a** directly from (*R*)-**2a** in 56 and 74% yield, correspondingly (path (b), Scheme 3).

Comparison of the optical rotation of the obtained product $([\alpha]_D = -49.8 \text{ for } 5a)$ with that of the natural product confirms the (R) absolute configuration of the homocitric acid lactone. This result is in good agreement with our earlier suggestion that the oxidation of the substrate 1a

using $Ti(OiPr)_4/(+)$ -diethyl tartrate/tert-BuOOH complex results in R-configuration of the newly formed stereogenic center in 2a.

2.2. Preparation of 4-hydroxyhomocitric acid-γ-lactones

The synthesis of new homocitric acid analogs—4-hydroxy-homocitric acids was accomplished starting from benzyl-oxy-substituted spirodilactones (2S,3R)-2b and (2S,3S)-2c, respectively. Preparation of the initial diketone 1b, its asymmetric conversion into diastereomeric spirodilactones 2b:2c as a 6:1 mixture, and separation of the diastereomers has been described by us earlier. The major diastereomer 2b from this procedure (ee 86–88%) was recrystallized from CH₂Cl₂—ether mixture affording the necessary substrate 2b in good yield (73%) and high enantiomeric purity (ee 98.5%). Compound (2S,3R)-2b was subjected to oxidation with $K_2S_2O_8$ (cat. RuCl₃×H₂O) using the same procedure that is described for 2a (Scheme 4).

Thus, (-)-4-hydroxyhomocitric acid- γ -lactone (3S,4R) **5b** was obtained from spirodilactone (2S,3R)-**2b** after oxidation, cyclization and removing the protecting benzyl group in 59% overall yield (Scheme 4).

An analogous process, starting from the minor isomer (2S,3S)-**2c**, resulted in a mixture of two compounds: **5c** and **7c** (identified only by 1 H and 13 C NMR spectra) (Scheme 5). The *cis*-orientation of the –OH and –CH₂COOH groups in

Scheme 3. Reagents and conditions: (a) (i) NaHCO₃, MeOH, rt. (ii) Jones' reagent, 71%. (iii) LiOH, THF 6 h, then 1 M HCl, 65%. (b) (iv) KMnO₄, 1 M NaOH, 16 h, rt, (56%). (v) 1 M HCl, (74%) or (iv) $K_2S_2O_8$, $RuCl_3 \times H_2O$, 0.2 N KOH. (v) 1 M HCl, (74%).

Scheme 4. Reagents and conditions: (i) K₂S₂O₈, RuCl₃×H₂O, 0.2 M KOH. (ii) conc. HCl, CH₂Cl₂ (61% for two steps). (iii) Pd/C, H₂ (96%).

Scheme 5. Reagents and conditions: (i) K₂S₂O₈, RuCl₃×H₂O, 0.2 M KOH. (ii) conc. HCl, CH₂Cl₂. (iii) Pd/C, H₂.

5c was also established by ¹H and ¹³C NMR spectra confirming the structure of **7c**.

3. Conclusions

The described method affords a simple and short access to homocitric acid and its derivatives. The method enables synthesis of homocitric acid γ -lactones in both enantiomeric forms starting from 3-hydroxymethyl-1,2-cyclopentane-dione via spirodilactone **2a** with the overall isolated yield of the target compounds more than 50%. The (-)-4-hydroxy-homocitric acid- γ -lactones **5b**, **5c** and bilactone acid **7c** can be obtained from 4-hydroxy-3-hydroxyethyl-cyclopentane-1,2-diones in a similar way. These are new compounds with a furanone skeleton, and biological activity is currently under study.

4. Experimental

4.1. General

¹H and ¹³C NMR spectra were determined in deuterated solvents on a Bruker AMX-500 spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from TMS. Deuterated solvent peaks were used as internal references: deutero-methanol at 3.30 and 49.00 ppm, deutero-acetone at 2.05 and 29.80 ppm. IR spectra were recorded on a Perkin-Elmer Spectrum BX FTIR spectrometer. Elemental analyses were performed on a Perkin–Elmer C,H,N,S-Analyzer 2400. Optical rotations were obtained using an A. Krüss Optronic GmbH polarimeter P 3002. TLC was performed using DC-Alufolien Kieselgel 60 F₂₅₄ (Merck) or Silufol[®] UV 254 silica gel plates. Merck Silica gel 60 (0.063-0.200 mm) or Chemapol silica gel L 40/100 was used for column chromatography. All the reactions sensitive to oxygen or moisture were conducted under argon atmosphere in ovendried glassware. Commercial reagents were generally used as received. CH₂Cl₂ was distilled from CaH₂ and stored over 3 Å molecular sieve pellets. The enantiomeric purity of the spirodilactones 2a-c was determined on a LKB liquid, chromatograph with Uvicord UV detector, using a Daicel Chiracel ODH chiral column.

4.2. (-)-Homocitric acid lactone (5a)

Method A. To a solution of spirodilactone **2a** (64 mg, 0.41 mmol) in a mixture of 1 M NaOH/CH₂Cl₂ 1:1 (4 mL), KMnO₄ (97 mg, 0.62 mmol) was added at 0 °C and the mixture was stirred for 16 h at room temperature. Then EtOH (4 mL) was added and the solution was filtered through Celite. EtOH was removed under reduced pressure,

the remaining water was acidified to pH 1 with 6 M HCl solution and the mixture was evaporated. The residue was dissolved in acetone (10 mL) and the solid material was filtered off. Removal of the acetone, followed by flash chromatography (silica gel, petroleum ether–acetone 10:5 to 10:6) gave **5a** as white solid (43 mg, 56%); $[\alpha]_D^{20} = -49.8$ (c 0.36, water); 1 H NMR ((CD₃)₂CO): δ 3.00 and 3.20 (both d, 2H, J= 17.1 Hz, H-2), 2.47 and 2.54 (both m, 2H, H-4), 2.60 and 2.62 (both m, 2H, H-5); 13 C NMR ((CD₃)₂CO): δ 176.33 (C-6), 172.43 (3-COOH), 170.47 (C-1), 83.42 (C-3), 41.64 (C-2), 31.83 (C-5), 28.26 (C-4); IR (KBr, cm⁻¹): 3121, 2983, 2934, 1755, 1723, 1674, 1386, 1244, 1186, 1062. Anal. calcd for C₇H₈O₆: C, 44.69; H, 4.29. Found: C, 44.65; H, 4.26.

Method B. To a solution of spirodilactone **2a** (29 mg, 0.19 mmol) in 0.2 M KOH (10 mL), potassium persulfate (251 mg, 0.93 mmol) followed by RuCl₃×H₂O (1 mg, 0.0044 mmol) was added with vigorous stirring. The mixture was stirred for 24 h at room temperature. Then Na₂SO₃ (94 mg, 0.74 mmol) was added at 0 °C followed by 6 M HCl (2.5 mL) after 0.5 h and stirring was continued for 1 h at room temperature. The reaction mixture was extracted with several portions of dry EtOAc. The combined extracts were dried (Na₂SO₄) and the solvents were removed. The residue was purified by flash chromatography (silica gel, petroleum ether–acetone 10:5 to 10:6) to yield **5a** as white solid (26 mg, 74%); [a]²⁰_D = -48.9 (c 0.38, water). Anal. calcd for C₇H₈O₆: C, 44.69; H, 4.29. Found: C, 44.58; H, 4.33.

4.3. (-)-4-Benzyloxyhomocitric acid lactone (6b)

To a stirred solution of spirodilactone 2b (48 mg, 0.18 mmol) in a mixture of 0.2 M KOH/CH₂Cl₂ 8:1 (10 ml), potassium persulfate (247 mg, 0.92 mmol) and RuCl₃×H₂O (1 mg, 0.0044 mmol) were added. After stirring for 23 h at room temperature the reaction mixture was extracted with CH₂Cl₂ (10 mL), the aqueous phase was acidified to pH 1 with 1 M HCl and extracted with EtOAc $(5 \times 10 \text{ mL})$. The combined extracts were dried (Na_2SO_4) and the solvents were removed. To this crude triacid dry CH₂Cl₂ (10 mL) and concentrated HCl (100 µL) were added. The mixture was vigorously stirred for 2 h at room temperature. Then water (12 mL) was added and the reaction was extracted with EtOAc (3×10 mL). The combined extracts were dried (Na₂SO₄) and the solvents were removed. The residue was purified by flash chromatography (silica gel, petroleum ether-acetone 10:4 to 10:6) to yield **6b** as white solid (33 mg, 61%); $[\alpha]_D^{20} = -21$ (c 1.04, acetone); 1 H NMR (CD₃OD+CDCl₃): δ_{H} 7.2–7.4 (m, 5H, Ph), 4.55 and 4.58 (both d, 2H, J = 11.8 Hz, PhCH₂), 4.45 (dd, 1H, J = 6.1, 7.6 Hz, H-4), 3.24 and 2.85 (both d, 2H, J = 17.2 Hz, H - 2), 2.87 (dd, 1H, J = 7.6, 17.8 Hz, H - 5),

2.71 (dd, 1H, J=6.1, 17.8 Hz, H-5); ¹³C NMR (CD₃OD+CDCl₃): $\delta_{\rm C}$ 175.01 (C-6), 171.31 (C-1), 170.64 (C-3COOH), 137.38 (s-Ph), 128.96 (m-Ph), 128.58 (p-Ph), 128.27 (o-Ph), 87.36 (C-3), 79.11 (C-4), 73.41 (Bn CH₂), 40.29 (C-2), 35.35(C-5); IR (KBr, cm⁻¹): 2948, 1787, 1725, 1433, 1232, 1095, 1077, 741, 696. Anal. calcd for C₁₄H₁₄O₇: C, 57.14; H, 4.80. Found: C, 56.81; H, 4.82.

4.4. (-)-4-Hydroxyhomocitric acid lactone (5b)

To a stirred solution of lactone **6b** (30 mg, 0.10 mmol) in MeOH (3 mL) 10% Pd/C (14 mg) was added and the mixture was stirred for 22 h at room temperature. The catalyst was removed by filtration through a pad of Silica gel and the filtrate was evaporated to give **5b** as white solid (20 mg, 96%); $[\alpha]_D^{20} = -17$ (c 1.20, acetone); ¹H NMR ((CD₃)₂CO): δ_H 4.73 (dd, 1H, J=6.5, 7.6 Hz, H-4), 3.30 and 2.92 (2H, both d, J=17.1 Hz, H-2), 2.97 (1H, dd, J=7.6, 17.6 Hz, H-5), 2.60 (1H, dd, J=6.5, 17.6 Hz, H-5); ¹³C NMR ((CD₃)₂CO): δ_C 174.20 (C-6), 170.67 (C-3COOH), 170.04 (C-1), 87.97 (C-3), 73.07 (C-4), 39.98 (C-2), 36.72 (C-5); IR (KBr, cm⁻¹): 3416, 2944, 1789, 1737, 1408, 1202, 1176, 1068. Anal. calcd for C₇H₈O₇: C, 41.19; H, 3.95. Found: C, 41.55; H, 4.00.

4.5. (+)-4-Hydroxyhomocitric acid lactone (5c) and 4-hydroxyhomocitric acid dilactone (7c)

Analogously to that of **5b** from lactone **2c**, a mixture of (+)-4-hydroxyhomocitric acid lactone (5c), (minor component) and 4-hydroxyhomocitric acid dilactone (7c) (major component) were obtained. (+)-4-Hydroxyhomocitric acid lactone (**5c**). ¹H NMR ((CD₃)₂CO): $\delta_{\rm H}$ 4.65 (d, 1H, J=5.6 Hz, H-4), 3.20 and 3.06 (2H, both d, J=17.0 Hz, H-2), 2.96 (1H, dd, J=5.6, 17.8 Hz, H-5), 2.39 (1H, d, J= 17.8 Hz, H-5); 13 C NMR ((CD₃)₂CO): $\delta_{\rm C}$ 175.20 (C-6), 168.9 (C-1 and C-3COOH), 88.40 (C-3), 72.05 (C-4), 38.32 (C-2), 37.15 (C-5). 4-Hydroxyhomocitric acid dilactone (7c). ¹H NMR ((CD₃)₂CO): $\delta_{\rm H}$ 5.39 (d, 1H, J=5.8 Hz, H-4), 3.56 and 3.00 (2H, both d, J = 18.8 Hz, H-2), 3.18 (1H, dd, J=5.8, 19.0 Hz, H-5), 2.86 (1H, d, J=19.0 Hz,H-5); 13 C NMR ((CD₃)₂CO): $\delta_{\rm C}$ 173.92, 173.06 and 168.86 (C-1, C-6 and C-3COOH), 88.67 (C-3), 81.33 (C-4), 37.93 (C-2), 35.12 (C-5).

Acknowledgements

We would like to thank Mrs. Tiiu Kailas for performing FT IR spectra and elemental analysis, Estonian Science Foundation (Grants nos 4976, 5133, 5628 and Estonian Ministry of Education (Grant 0350312s01).

References and notes

- Strassman, M.; Ceci, L. N. Biochem. Biophys. Res. Commun. 1964, 14, 262–267.
- Strassman, M.; Ceci, L. N. J. Biol. Chem. 1965, 240, 4357–4361.
- Hogg, R. W.; Broquist, H. P. J. Biol. Chem. 1968, 243, 1839–1845.
- Andi, B.; West, A. H.; Cook, P. F. Arch. Biochem. Biophys. 2004, 421, 243–254.
- Recently, new natural alkyl citrates that exhibit high antifungal potention were discovered: Singh, S. B.; Zink, D. L.; Doss, G. A.; Polishook, J. D.; Ruby, C.; Register, E.; Kelly, T. M.; Bonfiglio, C.; Williamson, J. M.; Kelly, R. *Org. Lett.* 2004, 6, 337–340.
- Coppola, G. M.; Schuster, H. F. Chiral α-Hydroxy Acids in Enantioselective Synthesis; Wiley-VCH: Weinheim, 1997.
- Maragoudakis, M.; Strassmann, M. J. Biol. Chem. 1966, 241, 695–699.
- Thomas, U.; Kalayanpur, M. G.; Stevens, C. M. *Biochemistry* 1966, 5, 2513–2516.
- Rodríguez, G. H. R.; Biellmann, J.-F. J. Org. Chem. 1996, 61, 1822–1824.
- Ancliff, R. A.; Russell, A. T.; Sanderson, A. J. *Tetrahedron: Asymmetry* **1997**, *8*, 3379–3382.
- 11. Li, Z.-C.; Xu, J.-Q. Molecules 1998, 3, 31–34.
- Ma, G.; Palmer, D. R. J. Tetrahedron Lett. 2000, 41, 9209–9212.
- 13. Lewis, Y. S.; Neelakantan, S. *Phytochemistry* **1965**, *4*, 619–625.
- Ibnusaud, I.; Thomas, P. T.; Rani, R. N.; Sasi, P. V.; Beena, T.;
 Hisham, A. *Tetrahedron* 2002, 58, 4887–4892.
- 15. Lowenstein, J. M. J. Biol. Chem. 1971, 246, 629-632.
- 16. Triscari, J.; Sullivan, A. C. Lipids 1977, 12, 357-363.
- 17. Mackeen, M. M.; Ali, A. M.; Lajis, N. H.; Kawazu, K.; Kikuzaki, H.; Nakatani, N. *Zaitschrift für Naturforschung* **2002**, *57c*, 291–295.
- Bolm, C.; Luong, T. K. K.; Beckmann, O. Asymmetric Oxidation Reactions; Oxford University Press: Oxford, 2001 pp 147–152.
- Lopp, M.; Paju, A.; Kanger, T.; Pehk, T. Tetrahedron Lett. 1996, 37, 7583–7586.
- Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974–5976.
- 21. Paju, A.; Kanger, T.; Pehk, T.; Müürisepp, A.-M.; Lopp, M. *Tetrahedron: Asymmetry* **2002**, *13*, 2439–2448.
- 22. Paju, A.; Kanger, T.; Pehk, T.; Lopp, M. *Tetrahedron Lett.* **2000**, *41*, 6883–6887.
- Paju, A.; Kanger, T.; Pehk, T.; Lindmaa, R.; Müürisepp, A.-M.; Lopp, M. Tetrahedron: Asymmetry 2003, 14, 1565–1573.
- Paju, A.; Kanger, T.; Niitsoo, O.; Pehk, T.; Müürisepp, A.-M.;
 Lopp, M. *Tetrahedron: Asymmetry* **2003**, *14*, 2393–2399.
- Green, G.; Griffith, W. P.; Hollinshead, D. M.; Ley, S. V.; Schröder, M. J. Chem. Soc., Perkin Trans. 1 1984, 681–686.