

Natural Product Letters

ISSN: 1057-5634 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/gnpl19

Short Synthesis of Novel 9,11-Secosterols

Raissa Jäälaid, Ivar Järving, Tõnis Pehk, Omar Parve & Ülo Lille

To cite this article: Raissa Jäälaid , Ivar Järving , Tõnis Pehk , Omar Parve & Ülo Lille (2001) Short Synthesis of Novel 9,11-Secosterols, Natural Product Letters, 15:4, 221-228, DOI: 10.1080/10575630108041285

To link to this article: http://dx.doi.org/10.1080/10575630108041285

	Published online: 04 Oct 2006.
	Submit your article to this journal ${\it f C}$
ılıl	Article views: 27
a ^r	View related articles 🗗
4	Citing articles: 5 View citing articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gnpl19

SHORT SYNTHESIS OF NOVEL 9,11-SECOSTEROLS

RAISSA JÄÄLAID^a, IVAR JÄRVING^a, TÕNIS PEHK^b, OMAR PARVE^a and ÜLO LILLE^{a,*}

^aInstitute of Chemistry at Tallinn Technical University, Akadeemia tee 15, Tallinn 12618, Estonia; ^bNational Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia

(Received 18 September 2000; In final form 20 January 2001)

Starting from ergosterol two novel 9,11-secosterols with modified side chains (1a) and (1c) were synthesized via eight main transformations.

Keywords: Partial synthesis of sterols; 9,11-secosterols; Lipase-catalyzed regioselective acetylation

Marine invertebrates are a productive source of novel sterols. Many isolated novel compounds have unique biological properties [1]. These compounds also include cytotoxic 9,11-secosterols [2–8].

In our laboratory, 9,11-secosterols (1a)-(1c) were recently isolated from the soft coral Gersemia fruticosa (Octocorallia, Alcyonacea, Nephtheidae)

^{*}Corresponding author. E-mail: lille@chemnet.ee

[9,10]. The inhibiting effect of (1a) on the cell cycle progression in the G_2/M phase was also demonstrated [11].

Starting from deoxycholic acid synthetic studies were carried out towards these secosterols [12,13]. However, this research topic has not yet been completed [14]. In our research community, studies on the total synthesis of these secosterols were started as well [15].

$$r_{4}$$
 r_{6}
 r_{6}
 r_{7}
 r_{8}
 r_{1}
 r_{8}
 r_{1}
 r_{1}
 r_{2}
 r_{3}
 r_{4}
 r_{5}
 r_{6}
 r_{1}
 r_{1}
 r_{2}
 r_{3}
 r_{4}
 r_{5}
 r_{6}
 r_{7}
 r_{8}
 r_{1}
 r_{1}
 r_{2}
 r_{3}
 r_{4}
 r_{5}
 r_{6}
 r_{7}
 r_{1}
 r_{1}
 r_{2}
 r_{3}
 r_{4}
 r_{5}
 r_{6}
 r_{7}
 r_{1}
 r_{1}
 r_{2}
 r_{3}
 r_{4}
 r_{5}
 r_{5}
 r_{5}
 r_{6}
 r_{7}
 r_{7}
 r_{8}
 r_{8

SCHEME 1 \mathbf{r}_1 : (Ac)₂O/Pyr. (1/2), r.t., 24 h; cryst. (MeOH–PhH); \mathbf{r}_2 PTAD, acetone, -70° C, 0.5 h; cryst. (EtOH–PhH); \mathbf{r}_3 : ozone, 1% Pyr. in CH₂Cl₂, -70° C, 2 h; chrom. (PhH/acetone 20/1); \mathbf{r}_4 : (CH₂OH)₂, pTsOH, CH₂Cl₂, Δ , 3 h; chrom. (PE/acetone 8/1–6/1); \mathbf{r}_5 : LiAlH₄, THF, Δ , 18 h, chrom. (CHCl₃/acetone 50/1–40/1); \mathbf{r}_6 : a) BH₃ THF, 0°, 1 h; b) H₂O₂, NaOH, r.t., 1,5 h; chrom. (PE/acetone/CH₂Cl₂ 15/1/1); \mathbf{r}_7 : Hg(OCOCH₃)₂, CHCl₃, CH₃COOH, r.t., 24 h, Δ , 0.5 h; chrom. (PE/Et₂O 5/1); \mathbf{r}_8 : OsO₄ (cat), (CH₃)₃NO, Pyr., *t*-BuOH, H₂O, Δ , 24 h; chrom. (CHCl₃/EtOH 9/1).

In this paper, we report on the partial synthesis of secosterols (1a) and (1c). Keeping in mind the C ring modification [3] of ergosterol (2) we started synthesis from (2) following Scheme 1. This molecule has a proper stereochemistry and carries functional groups necessary to perform modifications towards target compounds.

The first key intermediate (5) was prepared smoothly via routine 4-phenyl-1,2,4-triazolin-3,5-dione (PTAD) protection of a diene unit and side-chain ozonolysis [16] followed by the protection of the C-22 aldehyde

formed and deprotection of the diene unit in the B-ring. Unlike the hydroboration of steroidal homoallyl alcohol [12] the diene unit in hydroxydiene-aldehyde acetal (4) was hydroborated (followed by acetylation) with a good chemo- and regioselectivity. According to earlier results [3] the diacetoxy compound (5) obtained had the necessary α -oriented (pseudoequatorial) hydroxyl group at C-6 (9.8 Hz coupling between H-6 and H-5). The next principal step - dehydrogenation of diacetoxyacetal (5) to diene (6) - turned out to be a crucial one. In spite of an earlier work [17] demonstrating the dehydrogenation of 5,6-dihydroergosterol with mercuric acetate to the corresponding 7,9-diene with a satisfactory yield we encountered difficulties in performing this step efficiently. This was caused by the lability of the acetal protecting group under the conditions used [17]. The expected diene-acetal (6) was found with a poor 15% yield together with the starting acetal (5). The cis-dihydroxylation of diene-acetal (6) was performed using a catalytic amount of OsO₄[18]. This transformation resulted in a high yield of the second key intermediate the tetra-substituted acetal (7). The preparation of the intermediate osmate ester, using a stoichiometric quantity of osmium tetroxide followed by its cleavage with LiAlH₄, appeared to be a less favourable procedure giving the corresponding tetrol with a low yield. Thus, the total yield of the second key intermediate (7) from ergosterol (2) was severely hampered by the dehydrogenation step.

After the necessary protection/deprotection procedures the side chain was introduced by the Julia olefination [19] with a 30% yield (Scheme 2).

Notably, the sterically hindered hydroxyl group at C-9 was unaccessible to the acetylating agents [20].

The carbanion for alkylsulfonation was generated from the i-BuSO₂Ph prepared smoothly from i-butyl iodide and thiophenol followed by the oxidation with m-chloroperbenzoic acid. The intermediate obtained – a diastereomeric mixture of acetoxysulfones (9), was reduced without separation. The product (10) obtained had a nor-cholestane side chain and a C-22 double bond with a E-geometry (${}^3J_{\rm HH}$ of olefinic protons 15.4 Hz; trans alkyl substituents from the ${}^{13}{\rm C}$ chemical shifts). The selective cleavage of the carbon framework in diol (10) using Pb(OAc)₄ yielded smoothly the first target secosterol (1c) with a high yield.

The selective hydrogenation of the aldehyde moiety at C-11 with lithium tris[(3-ethyl-3-pentyl)oxy]aluminium hydride (LTEPA) [21] resulted in corresponding ketotriol (1d) with a 24% yield accompanied by the recovered (1c). The primary hydroxyl group formed was selectively acetylated with a customary acetic anhydride at lowered temperature [22] to obtain

the second target secosterol (1c) with an overall yield of 35%. The lipase-catalyzed regioselective acetylation [23] using Novozym[®] 435 (*Candida antarctica* lipase B) allowed us to perform this step with a 80% yield. The NMR data of the secosterols (1a) and (1c) prepared were identical to those of isolated natural secosterols [9,10].

(7)
$$\begin{array}{c}
 & r_{1}-r_{2} \\
 & AcO \\
 & H \\
 & OAC
\end{array}$$
(8)
$$\begin{array}{c}
 & AcO \\
 & H \\
 & OAC
\end{array}$$
(9)
$$\begin{array}{c}
 & r_{6} \\
 & H \\
 & OH
\end{array}$$
(10)

SCHEME 2 **r**₁: Ac₂O, Pyr., r.t., 24 h; chrom. (CHCl₃/acetone 40/1); **r**₂: H₂O, AcOH, 75°C, 20 min, chrom. (PE/Et₂O 4/1); **r**₃: n-BuLi, *i*-BuSO₂Ph, THF, -70°C, 2 h; **r**₄: Na/Hg, MeOH, EtOAc, -40°C/-20°C, 8 h/40 h; **r**₅: 0.6 N KOH (in EtOH/H₂O 19/1), Δ, 15 min; chrom. (CHCl₃/Et₂O 10/1-8/1); **r**₆: Pb(OAc)₄, AcOH, r.t., 10 min; chrom. (CHCl₃/EtOH 20/1); **r**₇: LTEPA, THF, -78°C, 3 h; chrom. (CHCl₃/EtOH 5/1); **r**₈: Ac₂O (1.2 eq.), Pyr., CHCl₃, -7°C, 48 h; or **r**₈: vinyl acetate (1.5 eq.), Novozym[®] 435, CHCl₃, r.t., 48 h.

The described synthetic scheme consists of eight principal steps allowing the preparation of these and related secosterols. This will enable further insights into antiproliferative and cytotoxic properties of these natural compounds. The limiting step of the scheme – the transformation of monoene (5) to diene (6) using a novel chemoenzymatic approach – is currently under study in our laboratory.

EXPERIMENTAL

All the reaction products were purified over silica (if not stated otherwise) using flash chromatography under low pressure. The yields were not optimized. ¹³C- and ¹H-NMR spectra were recorded at 125.7 and 500.17 MHz on a Bruker AMX-500 spectrometer. For the assignments 2D FT ¹H-¹H and ¹H-¹³C COSY correlation diagrams were used. MS measurements were performed (at EI -70 eV; CI – isobutane; gas chromatographic separation: 200-300°C, RLS-150, 10 m) on a Hitachi M-80B spectrometer. IR and

UV spectra were recorded on a Specord IR-75 and a DU-7 (Beckman) device, respectively. The optical rotation was measured using a polarimeter "Polamat A"; a cuvette with a path length of 10 cm was used. For TLC plates from Merck were used (DC-Alufolien Kieselgel 60 F₂₅₄). The reagents used were from Merck and Aldrich.

 $3\beta,6\alpha$ -Diacetoxy- 5α -pregn-7-ene-20(S)-carbaldehyde ethylene acetal (5) Ergosterol (8.0 g) (recrystallized from MeOH/PhH) was acetylated followed by recrystallization from EtOH/PhH and the adduct with PTAD was prepared (yield: 8.6 g; 95%). The adduct was ozonolized in a 1% pyridine in CH₂Cl₂ and the 20(S)-aldehyde formed (yield: 2.2 g 30%, diastereomeric purity controlled by TLC, n-hexane/i-propanol 5/1) was protected as ethylene acetal. PTAD protecting group was cleaved off (as described earlier [15]) and after borohydration [3] and acetylation acetal (5) (yield: 0.71 g; 64%) was obtained: m.p. 205–207°C, $[\alpha]_D^{23}$ + 76 (c 2.6, CHCl₃); ¹³C- and ¹H-NMR (in CDCl₃): C-1 36.63 (1.24 and 1.81); C-2 27.11 (1.49 and 1.83); C-3 72.62 (4.68); C-4 29.63 (1.34 and 1.93); C-5 44.80 (1.58); C-6 73.06 (5.06); C-7 118.03 (5.05); C-8 142.68; C-9 48.76 (1.78). C-10 35.30; C-11 22.83 (1.43 and 1.61); C-12 38.93 (1.31 and 2.04); C-13 43.89; C-14 54.13 (1.87); C-15 21.22 (1.47 and 1.63); C-16 26.97 (1.45 and 1.96); C-17 52.20 (1.51); C-18 11.75 (0.55); C-19 13.83 (0.92); C-20 39.47 (1.78); C-21 11.66 (0.94); C-22 105.88 (4.85); -O-CH₂CH₂-O- 65.02 (3.85 and 3.97) and 65.18 (3.85 and 3.93); -OAc 21.31 (2.05) and 21.36 (2.03); 170.54 and 171.26.

3β,6α-Diacetoxy-5α-pregn-7,9(11)-diene-20(S)-carbaldehyde ethylene acetal (6) Acetal (5) (710 mg) was treated with mercuric acetate [3]. The reaction product was chromatographed over silica and diene-acetal (6) was isolated as a 1/1 mixture with the starting compound (5) (yield: 210 mg; 15%) along with the corresponding mono- and triacetyldienes (6a) and (6b). (6) – NMR (CDCl₃): C-1 34.54 (1.46a, 1.94e); C-2 27.38 (1.61a, 1.97e); C-3 72.63 (4.68a); C-4 29.34 (1.36a, 1.96e); C-5 43.61 (1.61a); C-6 72.23 (5.15a); C-7 120.21 (5.21); C-8 137.91; C-9 142.05; C-10 35.66; C-11 121.25 (5.56); C-12 41.92 (2.15 and 2.32); C-13 42.80; C-14 50.71 (2.24); C-15 23.14 (1.40 and 1.76); C-16 27.44 (1.48 and 2.02); C-17 52.29 (1.59); C-18 11.11 (0.53); C-19 20.64 (1.02); C-20 39.30 (1.83); C-21 11.32 (0.94); C-22 105.87 (4.87); -OAc 21.29 (2.11), 21.34 (2.03), 170.52, 171.15; -O-CH₂-CH₂-O- 65.04 and 65.17 (3.85-3.95); MS: 472 (M⁺), 412 (M⁺ – 60), 352 (M⁺ – 120); UV, λ_{max} : 251.5, 242.0, 235.0 nm; (6a) – MS: 414 (M⁺), 354

 $(M^+ - 60)$; UV, λ_{max} : 250.5 nm and (6b); MS, 531 $(M^+ + 1)$, 471 $(M^+ - 59)$, 410 $(M^+ - 120)$, 350 $(M^+ 180)$; UV, λ_{max} : 249.5, 242.5, 236.0.

 3β , 6α -Diacetoxy- 9α , 11α -dihydroxy- 5α -pregn-7-ene-20(S)-carbaldehyde ethylene acetal (7) 103 µl of a 2.5% solution of OsO₄ in tert-BuOH was added to 210 mg of the mixture of acetal (5) and diene (6), 65 mg of trimethylamine N-oxide dihydrate, 37 µl of pyridine, 0.25 ml of water and 80 ml of tert-BuOH. The solution was refluxed under argon for 24h and then worked up [17]. By column chromatography the recovered acetal (5) was first isolated (82 mg) and then, 76 mg of diacetoxy-dihydroxyacetal (7) was obtained (yield: 0.76 g; 82%): m.p. 223–224°C; $[\alpha]_D^{22}$ +46 (c 5.2, CHCl₃); NMR (CDCl₃): C-1 31.51 (1.80a, 2.08e); C-2 27.01 (1.48a, 1.85e; C-3 72.19 (4.65a); C-4 29.97 (1.32a, 2.00e); C-5 38.59 (2.07a); C-6 72.52 (4.98a); C-7 123.69 (5.29); C-8 141.32; C-9 74.07; C-10 40.47; C-11 69.11 (4.12); C-12 46.33 (1.57a, 2.16e); C-13 43.17; C-14 50.05 (2.38); C-15 22.90 (1.42 and 1.58); C-16 26.87 (1.45 and 2.00); C-17 51.81 (1.59); C-18 12.07 (0.59); C-19 15.52 (1.08); C-20 39.35 (1.77); C-21 11.65 (0.95); C-22 105.65 (4.83); -OAc 21.19 (2.06), 21.35 (2.02), 170.54, 171.16; -O-CH₂-CH₂-O- 64.99 and 65.11 (3.79, 3.82, 3.95, 3.97).

 3β ,6\alpha,11\alpha-Triacetoxy-9\alpha-hydroxy-pregn-7-ene-20(S)-carbaldehyde (8)

After the routine protection of hydroxyl groups and deprotection [24] of the aldehyde moiety starting from 87 mg of (7) 54 mg of (8) was obtained (yield: 68%): m.p. 176–177°C; [α]_D²¹ +38 (c 6.5, MeOH); TLC–R_f 0.32 (n-hexane/acetone 2/1); NMR (CDCl₃): C-1 31.20 (1.81a, 1.41e); C-2 27.09 (1.49a, 1.86e); C-3 71.68 (4.63a); C-4 29.89 (1.39a, 2.01e); C-5 38.40 (2.13a); C-6 72.00 (4.98a); C-7 124.53 (5.33); C-8 139.72; C-9 74.53; C-10 40.60; C-11 72.06 (5.36); C-12 41.71 (1.64a, 2.09e); C-13 43.10; C-14 49.97 (2.50); C-15 23.10 (1.47 and 1.64); C-16 26.80 (1.43 and 2.03); C-17 50.45 (1.73); C-18 12.48 (0.70); C-19 15.42 (1.05); C-20 49.50 (2.36); C-21 13.49 (1.12); C-22 204.13 (9.57); -OAc 21.17 (2.06), 21.32 (2.03), 21.76 (2.07), 169.06, 170.54, 171.16; IR (KBr), ν_{max} 2720 (-CHO), 1730, 1715 (-CHO, -COCH₃), 1670 (-C = C-), 1390 (-OCOCH₃), 1235, 1015 (-C-O-), 970, 920, 900 (-CH = CH-) cm⁻¹.

24-nor-3β,6α,9α,11α-Tetrahydroxy-5α-cholesta-7,22(E)-diene (10) From 54 mg of aldehydes (8) 11 mg (yield: 30%) of tetrol (10) was obtained using the Julia olefination procedure [19]. (10): m.p. 192–194°C; TLC – R_f 0.39 (CHCl₃/EtOH 5/1); $[\alpha]_D^{19}$ + 10 (c 2.0, MeOH); NMR (pyridine-d5): C-1 32.96 (2.31a, 2.69e); C-2 32.58 (1.89a, 2.18e); C-3 70.13 (3.97a); C-4 35.89 (1.83a, 3.16e); C-5 43.40 (2.51a); C-6 69.46 (4.19a); C-7 129.34

(5.90); C-8 139.63; C-9 75.07; C-10 41.17; C-11 69.44 (4.47a); C-12 47.36 (1.96a, 2.37e); C-13 43.08; C-14 51.10 (2.77a); C-15 23.15 (1.47); C-16 28.46 (1.27, 1.65); C-17 55.86 (1.29); C-18 12.74 (0.70); C-19 16.14 (1.30); C-20 40.41 (1.98); C-21 20.94 (1.03); C-22 133.63 (5.15); C-23 135.20 (5.30); C-25 31.11 (2.20); C-26,27 22.80 (1.96); IR (KBr) – 3400 (-OH), 1660 (-C=C-), 1415 (-OH), 1010, 970, 830, 805 (-CH=CH-) cm⁻¹.

24-nor-9,11-seco-11-Oxo-3 β ,6 α -dihydroxycholesta-7,22(E)-dien-9-one (1c) 11 mg of tetrol (10) was treated with lead tetraacetate [3] and 10 mg (yield: 90%) of (1c) as an oil was obtained: TLC - R_f 0.52 (CHCl₃/EtOH 5/1); $[\alpha]_D^{19}$ +26 (c 2.7, MeOH); NMR data of (1c) were identical to those of the natural secosterol isolated from the coral [10].

24-nor-9,11-seco-11-Hydroxy-3β,6α-dihydroxycholesta-7,22(E)-dien-9-one (1d) 10 mg of aldehyde (1c) was reduced with LTEPA [21] and 2.5 mg of triol (1d) (conversion 25%) was obtained: m.p. 83–84°C; TLC – R_f 0.58 (CHCl₃/EtOH); ¹H-NMR: in comparison with the spectrum of starting (1c) the product showed no resonance characteristic to aldehyde hydrogen; characteristic 4 spin system from H-11 (3.68 m, 3.88 m) and H-12 (1.0 m, 1.59 m) appeared. At the same time, other functional groups were not modified: H-3 at 3.60 (m), H-6 at 4.29 (dm), H-7 at 6.58 (d), H-18 at 0.64 (s), H-19 at 1.14 (s), H-21 at 1.03 (d), H-22 at 5.25 (m), H-23 at 5.28 (m), H-25 and H-26 at 0.95 (d).

24-nor-9,11-seco-11-Acetoxy-3 β ,6 α -dihydroxycholesta-7,22(E)-dien-9-one (1a) To 2.5 mg of (1d) 1 ml of 0.05% vinyl acetate in CHCl₃ (1.5 eq.) and 100 mg of Novozym[®] 435 [25] were added and the solution was stored for 2 days. After filtration and purification 2 mg of the target secosterol was obtained (yield: 80%). TLC R_f value and NMR data of the product were identical to those of the original sample isolated from the coral [9].

Acknowledgements

The authors are grateful to The Estonian Science Foundation for financial support (grant Nos 2858 and 3501) and to Mrs. Riina Süld for reading and correcting the manuscript.

References

 M.V. D'Auria, M. Minale and R. Riccio (1993). Chemical Reviews, 93, 1839–1895.
 C. Bonini, C.B. Cooper, R. Kazlauskas, R.J. Wells and C. Djerassi (1983). Journal of Organic Chemistry, 48, 2108–2111.

- [3] A. Migliuolo, V. Piccialli and D. Sica (1991). Tetrahedron, 47, 7937-7950.
- [4] J. Pika, M. Tischler and R.J. Andersen (1992). Canadian Journal of Chemistry, 70, 1506-1511.
- [5] Q. Lu and D.J. Faulkner (1997). Journal of Natural Products, 60, 195-198.
- [6] M.V.R. Reddy, M.K. Harper and D.J. Faulkner (1997). Journal of Natural Products, 60, 41-43.
- [7] R.J. Capon and D.J. Faulkner (1985). Journal of Organic Chemistry, 50, 4771-4773.
- [8] H. He, P. Kulanthaivel, B.J. Baker, K. Kalter, J. Darges, D. Cofield, L. Wolff and L. Adams (1995). Tetrahedron, 51, 51-58.
- [9] R. Koljak, T. Pehk, I. Järving, M. Liiv, A. Lopp, K. Varvas, A. Vahemets, Ü. Lille and N. Samel (1993). Tetrahedron Letters, 34, 1985-1986.
- [10] R. Koljak, A. Lopp, T. Pehk, K. Varvas, M. Müürisepp, I. Järving and N. Samel (1998). Tetrahedron, 54, 179-186.
- [11] A. Lopp, A. Pihlak, H. Paves, K. Samuel, R. Koljak and N. Samel (1994). Steroids, 59, 274-281.
- [12] A. Kuhl and W. Kreiser (1998). Tetrahedron Letters, 39, 1145-1148.
- [13] A. Kuhl and W. Kreiser (1998). Collection of Szechoslovak Chemical Communications, 63, 1007-1011.
- [14] W. Kreiser (1999). Naturstoffchemie, Universität Dortmund (personal communication).
- [15] R. Aav, T. Kanger, T. Pehk and M. Lopp (2000). Synlett., 529-531.
- [16] D.H.R. Barton, T. Shioiri and D.A. Widdowson (1971). Journal of the Chemical Society (C), 1968-1971.
- [17] G. Saucy, P. Geistlich, R. Helbing and H. Heusser (1954). Helvetica Chimica Acta, 37, 250-257.
- [18] R. Ray and D.S. Matteson (1980). Tetrahedron Letters, 21, 449-450.
- [19] K. Mori, M. Sakakibara, Y. Ichikawa, H. Ueda, K. Okada, T. Umemura, G. Yabuta, S. Kuwahara, M. Kondo, M. Minobe and A. Sogabe (1982). Tetrahedron, 38, 2099-2109.
- [20] A. Hassner, L.R. Krepski and V. Alexanian (1978). Tetrahedron, 14, 2069-2076.
- [21] S. Krishnamurthy (1981). Journal of Organic Chemistry, 46, 4628-4629.
- [22] G. Stork, T. Takahashi, I. Kawamoto and T. Suzuki (1978). Journal of the American Chemical Society, 100, 8272-8273.
- [23] O. Parve, I. Järving, I. Martin, A. Metsala, I. Vallikivi, M. Aidnik, T. Pehk and N. Samel (1999). Bioorganic and Medicinal Chemistry Letters, 9, 1853-1858.
- [24] S. Bernstein, R. Lenhard and J.H. Williams (1953). Journal of Organic Chemistry, 18, 1166-1175.
- [25] The sample of Novozym[®] 435 (BA. LC2 0001) was a generous gift from Novo Nordisk A/S (Denmark).