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Identification of the reaction products of (2'-5')oligoadenylate synthetase
in the marine sponge
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Previously we reported on the presence of a high5(®ligoadenylate synthetase activity in the
marine spongé&eodia cydoniunjKuusksalu, A., Pihlak, A., Miller, W. E. G. & Kelve, M.1995) Eur.
J. Biochem. 232351 —-357]. The presence of &')oligoadenylates [(25')A] in crude sponge extract
was shown by radioimmunoassay and by their HPLC comigration with authefi)£2oligomers. In
addition, the sponge (&')oligoadenylates displayed biological activity, as determined by inhibition
studies of protein biosynthesis in rabbit reticulocyte lysate. In the present study individggb{Roade-
nylates synthesized by sponge enzyme were separated by HPLC. The exact composition of every oligonu-
cleotide peak eluted was determined by matrix-assisted laser-desorption-ionization mass spectrometry
(MALDI-MS) analysis. The 25' phosphodiester bond in oligoadenylates was verified by NMR analysis.
Based on the high concentration of -@)A oligomers inG. cydoniumand their similarity with those
found in mammals we propose that thé-§2A system is involved in a cytokine-mediated pathway and/
or in a protection system against viruses, present in the marine environment.

Keywords: (2'-5")oligoadenylate;Geodia cydonium matrix-assisted laser-desorption-ionization MS;
NMR.

Sponges (Porifera) are the simplest multicellular animalduced by interferonsip]. In mammals, the (25')A system is
which have existed since the Proteozoic peritd [n the past an important component of the cellular defence mechanism
few years several cDNA/gene sequences have been isolated against virus infection induced by interferon$]. The key en-
characterized from sponges, especially from the marine denmmyme of the pathway, (5')A synthetase{7—19], converts cel-
spongeGeodia cydoniumAnalyses revealed that sponges contular ATP to a family of unusual, short-%'-linked oligoadenyl-
tain proteins of the extracellular matrix/basal lamina (e.g. intettes (2-5')A carrying a triphosphate moiety at their &nd
grin receptor [2], collagen [3] or galectin [4, 5]), cell-surfacggeneral formula: pppA(RSA), usually 1=n<6). (2-5)A
receptors (tyrosine kinase receptor [6]), elements of the sensagpnthetase exists in several isoforms that occupy different intra-
system (crystallin [7], metabotropic glutamate receptor [8]) anckllular compartments [2022]. Its enzymatic product, (5')A,
homologs/modules of an immune system (immunoglobulin-likeinctions as an allosteric activator of a latent endoribonuclease
domains [9], scavenger receptor cysteine-rich domains and shi@Nase L) [23, 24], which degrades single-stranded viral and
consensus repeats$(], Rh-like protein [1]). These molecules cellular RNA. (2-5')A oligomers are rapidly metabolized b{-2
were found to display high similarity to sequences from menphosphodiesterase [25, 26] and/gB2exoribonuclease [27, 28].
bers of higher metazoan phyl&Z]. Very little is known about the occurrence of the'-@)A

Recently a cDNA encoding a putative cytokine, the endothsystem in animals which are phylogenetically older than mam-
lial monocyte-activating polypeptidel 3], was identified inG. mals. The activity of a (25')A synthetase has been detected in
cydonium[14]. The physiological role of this factor in spongeshirds and reptiles [29]; a putative '(8)A synthetase has been
is not known. One pathway in mammalian organisms which fartially purified from tobacco [30]. Moreover,'¢8')A binding
controlled by cytokine(s) is the (&')oligoadenylate [25'(A)] protein(s) have been found in low amounts in amphibia [29] and
system. It regulates the RNA degradation pathway and is i+ potato leaves [B. (2'-5')A molecules have even been re-

ported inEscherichia coli[32] and in some other bacteria and
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Abbreviations. (2-5')A, (2'-5')oligoadenylates; @.), (2-5)oli-
goadenylates containing phosphate groups and adenylate residues; .. . . . ' T\
(2-5)A synthetase, (5')oligoadenylate synthetase; poly(l) - poly(C),'ty in the marine spongé. cydonium[34]. (2-5)oligoadenyl-
polyriboinosinic acid - polyribocytidylic acid; MALDI-MS, matrix-as- ates '.SOIated from C_rude, sponge e.X”"?‘Ct competed with a_uthentlc
sisted laser-desorption-ionization mass spectrometry. chemically synthesized @&')A for binding to polyclonal antise-

Enzymes. (2-5)oligoadenylate synthetases (EC 2.7.7.); ribofum against (25')A [35]. Individual (2-5')oligonucleotides syn-
nuclease L (EC 3.27.-); 2-phosphodiesterase (EC131.-); 2,3-exori-  thesized with partially purified sponge’{2)A synthetase were
bonuclease (EC 8.13.-); calf intestinal phosphatase (EQ .3.1). subjected to HPLC and identified by their comigration with mo-

Recently, we have discovered high-8)A synthetase activ-
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lecular markers for (25')A oligomers. In this study we present  Sample preparation for NMR analysihe triphosphory-
data on the direct identification by matrix-assisted laser-desorpted (2-5")A dimer, separated and desalted as described above,
tion-ionization mass spectrometry (MALDI-MS) analysis ofwas treated with calf intestinal phosphatase (Boehringer Mann-
the total (2-5')oligoadenylate pool synthesized by the spongkeim) for 5 h at 37C [34]. The resulting dephosphorylated core
(2-5")A synthetase. Furthermore, NMR technique was used fdimer was re-chromatographed in a methanol gradient as de-
verification of the 25 phosphodiester bond in oligoadenylatescribed above. The product was lyophilized and redissolved in
synthesized by the sponge enzyme. deuterated water.
MALDI-MS analysis. Mass spectrometric analysis of

(2-5')oligoadenylates synthesized by the sponge enzyme, was
MATERIALS AND METHODS conducted with a home-built matrix-assisted laser-desorption/

ionization time-of-flight mass spectrometer in linear configura-

Sponge.Live specimens of the marine spon@e cydonium tion and with delayed pulsed extraction. 3-Hydroxypicolinic
(Porifera, Demospongiae, Geodiae) were collected in the Northeid (Aldrich Chemicals) was used as the matrix with ammo-
ern Adriatic Sea near Rovinj (Croatia), cut to pieces and immeaium tartrate (synthesized from tartaric acid and ammonium car-
diately frozen in liquid nitrogen. bonate) to suppress alkaline metal adducts. The matrix solution

Cell extracts. Frozen sponge tissue was mechanically brawas prepared by dissolving 50 mg of 3-hydroxypicolinic acid
ken in liquid nitrogen using mortar and pestle and homogenizeahd 9.2 mg of ammonium tartrate inml H,O/acetonitrile (:1
with an equal amount (mass/vol.) of the polymerase assay buffer vol., HPLC grade).1-ul aliquots of concentrated fractions
(buffer A) consisting of 20 mM Tris/HCI, pH 7.6,00 mM KCI, obtained after chromatographic separation were mixed wijth 5
5 mM MgCl,, 0.5% Nonidet P-40 and 5% glycerol. The mixtureof matrix solution. Aliquots ofl ul of the resultant mixture were
was centrifuged10 min; 10000xg, 4 °C), the supernatant was deposited on a stainless steel target and air-dried before intro-
collected and frozen immediately. The protein concentration wasicing into the mass spectrometer.

12 mg/ml. NMR analysis. An approximately 0.5 mM solution of the

Preparative synthesis of (25)A oligomers. Synthesis of dephosphorylated {(H')A dimer was measured at 500 MHz at
(2’-5")A oligomers using sponge '(8')A synthetase was carried 20 C on a Bruker AMX spectrometer while dissolving the
out with the partially purified enzyme bound to polyriboinosinicsample in?H,0 without any previous treatment of nucleotides
acid - polyribocytidylic acid [poly(l) - poly(C)] membrane as defor their enrichment wittfH,O. Several hundreds of scans were
scribed [36]. Poly(l) - poly(C) membrane for binding and activaperformed to observe NMR signals from this dinucleotide solu-
tion of the (2-5')A synthetase was prepared by hybridizing potion.
ly(l) to poly(C), previously immobilized to Hybond C mem-
brane (Amersham). Standard northern blotting hybridization
method in the presence of formamide was applied [37]. The CORESULTS
centration of poly(l) and poly(C) in the hybridization reaction
was 10 mg/ml, the washing steps were performed in the preMALDI-MS analysis. MALDI-MS analysis was applied to
ence of 0.00% diethylpyrocarbonate. samples obtained after the HPLC separation on,acGlumn;

For the synthesis of (')A oligomers, threel cn? pieces the separation was performed in phosphate buffer using a metha-
of poly(l) - poly(C) membrane were washed three times withol gradient. The standard separation curve is shown in1Fig.
buffer A and dried fort0 min on filter paper. The enzyme wasOverlapping peaks were collected manually and subjected to
immobilized from 3 ml of sponge extract at room temperatureechromatography in triethylammonium acetate buffer. Oli-
with gentle shaking for 30 min. The membrane with boundoadenylates eluted as broad tailing peaks in the triethylammo-
(2’-5')A synthetase was washed three more times with buffer dium acetate containing an acetonitrile gradient. However, this
and then dried fol 0 min. The reaction mixture containddnM step was performed to change the buffer into a volatile one
ATP, 30 mM Tris/HCI, pH 7.6,100 mM KCI and 5 mM MgCJ}. rather than for further separation.

The synthesis was performed in 24-well plate wells (Nunc) at As an example, the MALDI-MS analysis of the sample
room temperature fotO h. During this period almost all of the no. 8, corresponding tol6.4 min. retention time (shown in
ATP was converted into (Z')A oligomers. The synthesis mix- Fig. 1), is given in Fig. 2. Rechromatography of this fraction
ture together with the reaction products were pipetted intoia triethylammonium acetate buffer with acetonitrile as eluent
microcentrifuge tube. The membrane used for synthesis wavealed three partially resolved peaks with respective retention
washed with water and the eluate was combined with the mitimes 0f17.8, 20.2 and 26 min, which were collected and ana-
ture; this material was concentrated in a vacuum centrifuge. lyzed separately. In MALDI spectra three main compounds

High performance liquid chromatography. Sample prepa- could be identified which were eluted in triethylammonium ace-
ration for MALDI-MS analysisThe (2-5)A oligomers synthe- tate buffer in retention order pAp,As and pA.. However, all
sized were applied to the HPLC apparatus (Du Pont) equipptatra-, penta- and hexa-adenylates could be found with some in-
with a C; reverse-phase column (Supelcosil 18, 30 cm) and tensity (Fig. 2b and c). The protonated oligoadenylate peaks
separated as described [38] applying a 0 to 30% methanol gragtiere accompanied by smaller alkali metal adduct peaks on the
ent in 50 mM ammonium phosphate, pH 7.0, for 30 min. Fradiigh mass side. In all spectra, smalleAppeaks precededp,,
tions were collected manually by measuring absorbance mgaks, and in the same way smalley peaks preceded pA
254 nm and concentrated in vacuum centrifuge. peaks. This could be a result of dephosphorylation of the polya-

The fractions were rechromatographed for desalting ikenylates in the MALDI sample preparation or in the MALDI
100 mM triethylammonium acetate, pH 7.0, using@to 30% process itself. No significant breakdown of the polyadenosine
acetonitrile gradient (30 min). Fractions were collected and reroiety was detected in the MALDI process.
evaporated three times in vacuum centrifuge (dissolving them In MALDI sample preparation different components of a
between the concentration steps in double-distilled water) toixture can crystallize in different areas of the sample, depend-
eliminate the traces of triethylammonium acetate, and then diag on when the drying solution becomes saturated for them.
solved in water. The concentrations of thé-$9A oligomers Because of this, spectra from different spots on the sample were
were calculated by their absorbance at 254 nm. compared and less than 30% difference in the intensity ratios of
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Table 1. Identification of reaction products synthesized by the (25)A synthetase from G. cydoniumfrom exogenous ATP by MALDI-MS
analysis. Main components are marked in bold. ChromatographiAPLC analysis with ¢ column using 50 mM phosphate, pH 7.0 and a 0 to
30% methanol gradient (running time; 30 min). Chromatography 2, HPL,€dlumn analysis with th¢00 mM triethylammonium acetate, pH 7.0,
and a10 to 30% acetonitrile gradient (running time, 30 min).

Sample no. Retention time M, (experim.) Oligoadenylate ¢p.) M(calc.)
Chromatographyt Chromatography 2
min
1 8.7 7.7 836.8 Ao 837.4
2 9.4 6.3 756.8 . 757.4
7.5 757.6 PA: 757.4
836.8 RA, 837.4
3 12.7 6.7 677.6 A 677.4
13.2 12.3 1086.0 RA, 1086.6
1165.8 pAs 1166.6
5 14.9 17.0 1415.3 RA. 1415.8
1495.4 RA. 1495.8
6 15.3 14.0 1006.7 RA, 1006.6
18.0 1006:7 pA; 1006.6
1415.4 RA, 1415.8
1495.6 RA, 1495.8
7 15.7 14.2 1006.4 RA; 1006.6
18.0 1006.7 pA; 1006.6
1415.8 RA. 1415.8
1495.8 RA. 1495.8
1824.8 RAs 1825
19.2 1745.0 RAs 1745.0
1825.2 RAs 1825
8 16.4 17.8 1335.9 pA, 1335.8
14961 pA, 1495.8
16651 pAs 1665
1745.0 RAS 1745
1824.8 RA: 1825
20.2 1335.8 pA, 1335.8
1495.7 RA, 1495.8
1664.9 pAS 1665
17451 pPAs 1745
1825.0 RAs 1825
2153.8 RAs 2154.2
21.6 1335.4 pA. 1335.8
1824.6 RAs 1825
19941 pAs 1994.2
2074.2 BAs 2074.2
2153.5 RAs 2154.2
9 16.8 16.5 1335.9 pA. 1335.8
1665.6 PAs 1335.8
18.6 1335.7 RA, 135.8
1495.6 RA, 1495.8
1664.8 PAs 1665
1825.0 RAS 1825
20.4 1335.7 pA., 1335.8
1495.9 RA, 1495.8
1665.2 PAS 1665
17451 PAs 1745
1825.0 RAS 1825
1994.5 RA, 1994.2
2074.2 A 2074.2
2154.4 RA. 2154.2
2483.6 RA, 2483.4
>22.0 1335.2 pA, 1335.8
1664.4 RAS 1665
1744.5 RAs 1745
1824.6 RAs 1825
1993.7 pAs 1994.2
2073.6 pA6 2074.2
2482.8 BA-, 2483.4

2812.2 RAs 2812.6
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Fig. 1. Reverse phase HPLC elution profile with methanol gradient
resolving the reaction products synthesized by the (Z')A synthe- C
tase from G. cydoniumusing exogenous ATP.
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different lines within a spectrum was found. So we believe th: N s
the spectra give at least a qualitatively correct picture of th T == ! " T "
composition of collected chromatographic peaks.

Table 1 summarizes the full identification by MALDI-MS
method of the compounds in all HPLC fractions collected.

2200

m/z
Fig. 2. MALDI-MS spectra of sample no. 8 (see Table 1) with the
retention times in triethylammonium acetate 17.8 min (a), 20.2 min
NMR analysis. 'H NMR studies of nucleotides are typically () and 21.6 min (c), respectively.
performed at concentrations of tens of millimoles per litre{39
43], in some cases up to more th&®0 mM [42]; others have
used a 600-MHz instrument in which about 5 mM solution has
been measured [43]. As a rule, nucleotides are pretreated with The resulting spectrum unambiguously confirmed the struc-
cation-exchange resins, lyophilized several times from hightyre of AZ-5'A, as compared with the published data on this
enriched?H,0O and the final solution is prepared in 99.986,0. nucleotide [39]. Comparison of data from two measurements
In the present study, a 0.5 mM solution was measured witho{itable 2) showed marked differences in some chemical shifts
any previous treatment simply by solving the sampléHpO. (up to = 60 ppb), but spin-spin coupling values, among them the
Several hundreds of scans were needed to observe NMR sigrids nucleus, were practically the same. This is the proves the
from this dinucleotide solution. The residual signal from HDGexistence of the '2' phosphodiester bond in organisms other
was more thanl000-times stronger than the signals from théhan mammals, using physical methods. A structure of8
nucleotide. Therefore, presaturation of HDO signal was usedas ruled out by the reported chemical shift difference of H
Good suppression of the HDO signal was obtained, and evprotons equal to @1 ppm [44] (in the present study 0.326 ppm)
the multiplet from H. of Np- residue, which appeared aboutand their coupling constants (3.2 Hz and 3.5 Hz [44]). The pres-
100 Hz from the HDO resonance, was observed. ence of A5-5'A was ruled out by symmetry considerations.

Table 2. Comparison of*H chemical shifts and spin-spin coupling constants of A25'A in 57 mM [40], 0.5 mM and infinitely diluted [45]
heavy water solution.

Fragment Proton 0.5 mM solution 57 mM solution Infinite dilution®
% F 1) J 0
Np- 1 6.560 45 6.560 47 6.56 45
2 5.574 5.0 9.3(P) 5.569 5.0 9.3(P)
3 5.061 4.8 5.084 4.6
4 4.650 243 4.690 2433
5 4.222 13.1 4.279 13.0
5" 4119 4176
2 8.891 s 8136 s 815
8 8.615 s 8.587 s 8.59
-pN 1 6.236 3.7 6.230 3.7 6.22 2.8
2 4,715 4.9 4.734 4.9
3 4.746 5.6 4.744 5.9
4 4.556 1.8 2.4 2.3(P) 4.56 1.8 2.4 2.5(P)
5 4.469 11.6 3.3(P) 4.480 11.5 3.5(P)
5" 4.354 3.7(P) 4.333 3.6(P)
2 8.600 S 8.540 s 8.58
8 8.43 s 8.405 s 8.4

@ Extrapolation to infinite dilution chemical shift of H-of Np- [45] has been used for the reference.

® Coupling constants for protons with lower number are not repeated, spin-spin coupling to P is marked by (P).

¢ From [39], reported data interpolated to°@0form 9°C and 39C values. For comparison purposes chemical shifts df b Np- are taken
as equal. It has been shown thatiHef Np- has the smallest concentration effect [44].

¢ From [44], interpolated to 20C from 4°C and 30C values.
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DISCUSSION comigrate in reverse-phase HPLC. In spite of difficulties rising
due to degradation of the primary synthesis products, we were
Sponges (phyla Porifera) are the simplest multicellular anéble to show clearly that sponge-2)A synthetase activity was
mals and have existed since the Proteozoic peripdAs sum- capable of producing at least up td-&@)octaadenylate triphos-
marized above, these animals have key structural and functiopfhtes. Thus, the ability of spongé-8)A synthetase to synthe-
elements, found also in higher metazoan phyla. In the first agize long oligomers is analogous to mammaliar52A synthe-
proach to elucidate a cytokine-related pathway similar to that iase activity.
mammalian organisms, the'{2)A system was studied in the  The apparent peak in Fig. between the peaks 2 and 3,
spongeG. cydonium Previously, we reported that this animalwhich could not be assigned to any-&)oligoadenylate product
contains one enzyme of this system, theg3A synthetase [34]. by chromatographic mobility, was also analyzed by MALDI-
Suprisingly, the enzyme which is usually induced by interferongS. This peak was not a derivative from ATP, as revealed by
in mammalian cells is very active in sponge cells [34]. In th&1ALDI-MS showing a spectrum which contained a series of
present study it was shown by physical methods that thggnals separated by exactlgl Da starting at 345 Da. This was
(2-5)oligoadenylates synthesized by the sponge enzyme gibably an impurity eluted from the HPLC column or the nitro-
identical to those in mammalian cells, that is, they ha®' 2 cellulose membrane.
phosphodiester bonds between the adenosine residues and carrffhe exact role of these unusual’-@)oligoadenylates in
triphosphate groups at theit Bnds. The latter can be seen insponge remains to be elucidated. However, the high concentra-
Table1 from molecular mass data estimated by MALDI-MStion of these mediators [34] together with their similarity with
method. those found in mammals, point to their important function in
MALDI-MS has been shown to be ideally suitable for identisponges. At present it can be postulated that the &'}
fication of small oligonucleotides [45]. Two important advansystem is involved in a cytokine-mediated pathway and/or in the
tages of MALDI-MS, the sensitivity and ability to analyze com-protection system against viruses, present in the marine environ-
plex mixtures, allow the identification of any oligonucleotidement. The existence of cytokines or related molecules has been
chromatography pattern within seconds. These advantages stiewn in spongeslift] and the presence of viruses in the marine
now being utilized to sequence biopolymers [46, 47]. MALDImilieu is well documented [56]. Studies are in progress to iden-
MS has also been applied to large-scale DNA sequence analyifis further components of the {F)A system in sponges and to
[48—54]. The accuracy in mass provided by delayed extractiaslucidate the structure of the spong&%3A synthetase gene(s).
MALDI-MS is fully adequate for this kind of analysis. In experi-
ments described here, the discrepancy between calculated andrhis work was supported by a grant from Bendesministerium fir
experimental values of molecular masses never exceeded @fiéung WissenschaftForschung und Technologi¢Estonian-German
molecular mass unit. This allows us to identify unambigouslooperative program) and Estonian Science Foundation (A. K., T. R.
(2-5)oligoadenylates with different phosphorylation state. and M. K.). We thank Prof. E. Lippmaa for critical reading of the manu-
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