

0960-894X(94)00228-2

SYNTHESIS AND ANTIPROLIFERATIVE ACTIVITY OF 15-OXOPROSTAGLANDINS: CONTRIBUTION OF THE ω -CHAIN ENONE GROUP TO CYTOTOXICITY

Margus Lopp", Annika Lopp, Anne Paju", Ülo Lille and Tonis Pehk".

Department of Organic Synthesis, Institute of Chemistry. Akadeemia tee 15, EE0026 Tallinn, ESTONIA; Department of Bioorganic Chemistry, Institute of Chemistry. Akadeemia tee 15, EE0026 Tallinn, ESTONIA; Department of Physics, Institute of Chemical Physics and Biophysics. Rävala pst 10, EE0001 Tallinn, ESTONIA.

Abstract: 15-Oxo metabolites of prostaglandins E_2 , $F_{2\alpha}$ and new 15-oxo prostaglandin analogues 5 and 7 were found to reveal higher antiproliferative activity than the corresponding 15-hydroxy derivatives on human leukemia K562 cells *in vitro*. The responsibility of the enone group in the ω -chain of a prostanoid molecule for this activity is suggested.

Prostaglandins (PGs) of the E, A, and D series as well as marine coral prostanoids (clavulones, punaglandins etc.) have been shown to inhibit the growth of several animal and human tumour cell lines, including various leukemia cell lines.¹⁴ Regarding the structure requirements, it is well established that a cyclopentenone unit is essential for the cytotoxic activity of a prostanoid compound.^{5,6} Thus, cyclopentenoic prostaglandins, for example, PGA and PGJ, can be transported into cells and accumulated in cell nuclei^{7,8}, differently from their respective metabolic precursors PGE and PGD. No studies have been carried out on the cytotoxic activity of the prostanoids, containing an enone unit in the ω-chain of the molecule. For example, the 15-oxo derivatives generally considered to be metabolic inactivation products of natural prostaglandins⁹ have not been studied on this activity.

Interestingly, we found that 15-oxo-PGE₂, - the first degradation metabolite of PGE₂, exhibited a higher antiproliferative activity on human leukemia K562 cell line than PGE₂. This finding forced us to study more widely the contribution of the enone group in the ω -chain of a prostaglandin molecule to the antiproliferative activity. We have synthesized 15-oxo-PGF_{2 α} 2, 15-oxo-PGE₂ methyl ester 4 and ring modified 15-oxo prostanoids 5 and 7, and compared their cytotoxicity with that of the corresponding 15-hydroxy prostaglandins - PGF_{2 α} 1, PGE₂ 3 and 15-hydroxy prostanoids 6 corresponding to the prostaglandin analogue 5.

15-Oxo-PGF_{2 α} 2 was synthesized according to Anggard and Samuelsson.¹⁰ 15-Oxo-PGE₂ methyl ester 4 and a new prostaglandin analogue - 9-deoxy-11-deoxy-10(R), 12(R)-dihydroxy-15-oxo- α -PGE₂ methyl ester 5 were prepared starting from (R)-(+)-methyl-7-(3-tetrahydropyranyloxy-5-oxo-1-cyclopentenyl)-5(Z)-heptenoate ¹¹ (Scheme 1).

1740 M. LOPP et al.

Scheme 1

Scheme 2

HO R R COOMe

OH OH

OH

$$OH$$
 OH
 OH

The 1,4-conjugate addition (path a) of the ketalic cuprate reagent to this enone gave 15-oxo-PGE₂ methyl ester 4 in 30% yield after deacetalization, while the 1,2-addition of the reagent (path b) led to the diastereomeric THP derivatives 5-THP in a 3:2 ratio. These diastereomers were easily separable on silica gel before deacetalization. However, after deacetalization a single product, dihydroxy enone 5, with *cis*-orientated OH- groups, was obtained in 9% yield from the starting enone.¹² Compound 5 represents a new synthetic prostaglandin analogue, characterized by 8,9 double bond and hydroxyl groups at C-10 and at C-12 position.

The corresponding 15-hydroxy compounds were obtained from 5 by reducing it with NaBH₄ in EtOH yielding, after chromatographic separation, diastereomeric 15(R)- and 15(S)-hydroxy prostanoids 6 (87%)¹³ (Scheme 2). Compound 5 was also oxidized by using Jones reagent into 9-deoxy-11-deoxy-12(R)-hydroxy-10,15-dioxo-Δ⁸-PGE₂ methyl ester 7 in 87% yield ¹⁴ (Scheme 2).

The antiproliferative activities of $PGF_{2\alpha}1$, PGE_2 3, their methyl esters, ¹⁵ the corresponding 15-oxoderivatives 2 and 4, and the new synthetic prostanoids 5-7 are presented in the Table.

TABLE

The antiproliferative activity of PGF_{2 α} 1, PGE₂ 3 (free acids), their methyl esters, the corresponding 15-oxo derivatives - 15-oxo-PGF_{2 α} 2, 15-oxo-PGE₂ methyl ester 4, and synthetic prostanoids 5, 6°, and 7 on human leukemia K562 cells *in vitro*^b.

Compound	IC ₅₀ , μM°
1 1 methyl ester 2 2 methyl ester 3 3 methyl ester 4 5 6 7	>700 99 ± 4 362 ± 7 61 ± 5 63 ± 4 41 ± 1.4 28 ± 1.5 20 ± 1 201 ± 9 6.6 ± 0.4

^{*} A mixture of 15(R) and 15(S) isomers as well as the diastereomers separately.

^b Cells were grown in DMEM, supplemented with 10% of fetal calf serum, penicillin (100 U/mL), and streptomycin (0.1 mg/mL) at 37°C in a humidified atmosphere of 5% CO₂ in air. Cells were plated in 24-well Nunc multidishes at a density of 2 x 10⁵/ mL and incubated in the presence of various concentrations of the investigated compounds for 48 h. The viable cells, determined by trypan blue dye exclusion, were counted on a hemocytometer.

 $^{^{\}circ}$ IC₅₀ is the dose that, after 48 h, reduces the cell growth *in vitro* by 50% as compared to the control cultures. The data are expressed as means \pm SEM (n=4-8).

1742 M. LOPP et al.

As can be seen from the data presented in the Table, the methyl esters of PGE₂ and, especially, of PGF_{2α} were more cytotoxic than the parent free acid compounds, which may be explained by their better penetration into the cell. The 15-oxo derivatives revealed an additional increase in the cytotoxic activity. In case of PGE₂ such an increase may be caused by a more rapid serum albumin- catalyzed dehydration of 15-oxo-PGE₂ to 15-oxo PGA₂ when compared to the conversion of PGE₂ to PGA₂ in the culture medium. ¹⁶ PGA has been shown to be the ultimate active compound which is transported through the cell membrane and, in the protein-bound form, into the cell nucleus. ^{17,18}

However, since albumins have no destructive effects on PGF_{2 α} and 15-oxo-PGF_{2 α}, ¹⁶ such a mechanism does not explain the cytotoxicity caused by the prostaglandins of F series. Our data demonstrate that the enone group of the ω -chain of the PGF_{2 α} molecule clearly enhances the cytotoxicity (cf. compound 2 to its parent compound 1 both as a free acid and as a methyl ester, see Table). This phenomenon may evidence of the better transportation of 15-oxo-PGF_{2 α} into cells while no accumulation of PGF_{2 α} by murine leukemia cells in culture has been shown⁷. Also, the α , β -unsaturated carbonyl group of compound 2 may react, similarly to cyclopentenone prostaglandins, with some cellular nucleophiles, which ultimately results in the cytotoxicity.

Although compound 5, because of its structural properties, does not possess the ability to form a cyclopentenone prostaglandin (PGA-type) via enzymatic dehydration, it still revealed a higher cytotoxic activity than 15-oxo-PGE₂ methyl ester. The reduction of the 15-oxo group in compound 5 to the trihydroxy compound 6^{19} decreased the antiproliferative activity about 10 times. Thus, the facts presented above indicate that the enone unit in the ω -chain plays an important role in the cytotoxic activity of compound 5. Oxidation of the hydroxyl group at C-10 in compound 5 to compound 7 bearing enone units in both the ring and ω -chain resulted in the additional increase of the activity about 3 times (Table). This points to the formation of a reactive, rather unusual α,β -unsaturated carbonyl group in the cyclopentane ring (α^8 , 10-oxo) which also contributes to the cytotoxic activity of the compound. The antiproliferative activity of compound 7 exceeded the activity of PGD₂ (IC₃₀ = 10 μ M) on the K562 cell line.²⁰

In conclusion, the results of the present study demonstrate that the enone unit in the ω -chain of natural prostaglandins of E and F series contributes to the cytotoxic effect of the compounds. So, 15-oxo-PGE₂ and 15-oxo-PGF_{2 α}, the first metabolites of PGE₂ and PGF_{2 α} in most cells²¹, reveal higher antiproliferative activity than PGE₂ and PGF_{2 α} on the K562 leukemia cell line *in vitro*. The ring modified 15-oxo-prostaglandin analogues 5 and 7 represent a new series of cytotoxic prostanoids. The difference in the activity of 5, 6, and 7 shows that both the ω -chain and ring enone groups play an important role in the determination of their biological activity.

Acknowledgements. We thank the Estonian Science Foundation for financial support (Grant No 378).

References and Notes

- 1. Santoro, M.G.; Philpott, G.W.; Jaffe, B.M. Nature 1976, 263, 777.
- 2. Santoro, M.G.; Crisari, A.; Benedetto, A.; Amici, C. Cancer Res. 1986, 46, 6073.
- 3. Bhuyan, B.K.; Adams, E.G.; Badiner, G.J.; Li, L.H.; Barden, K. Cancer Res. 1986, 46, 1688.
- 4. Honda, A.; Mori, Y.; Iguchi, K.; Yamada, Y. Molec. Pharmacol. 1987, 32, 530.
- 5. Fukushima, M.; Kato, T. *Icosanoids and Cancer*; Thaler-Dao, H.; Crastes de Paulet, A.; Paoletti, R., Eds.; Raven Press; New York, 1984; pp. 275-278.
- 6. Honn, K.V.; Marnett, L.J. Biochem. Biophys. Res. Commun. 1985, 129, 34.
- 7. Narumiya, S.; Fukushima, M. J. Pharmacol. Exp. Therap. 1986, 239, 500.
- 8. Narumiya, S.; Ohno, K.; Fukushima, M.; Fujiwara, M. Prostaglandins in Cancer Research; Garaci, E.; Paoletti, R.; Santoro, M.G., Eds.; Springer Verlag; Berlin, Heidelberg, 1987; pp. 86-96.
- 9. Andersen, N.H.; Ramwell, P.W. Arch. Intern. Med. 1974, 133, 30.
- 10. Anggard, E.; Samuelsson B. J. Biol. Chem., 1964, 239, 4091.
- 11. L.Gruber, I.Tömösközi, E.Gulácsi, M.Lopp, Ü.Lille, Eesti NSV Teaduste Akadeemia Toimetised. Keemia 1986,35,134. (Chem. Abs. 1987, 106, 32653p). The compound has $[\alpha]_D^{20} = +13,5^\circ$.
- 12. The synthesis procedure was as follows: 1.22 mL of n-BuLi (1.27M in hexane) was mixed at -78°C with 503 mg of (E)-1-iodo-1-octen-3-one ethylene ketal in 3.5 mL of Et_2O and a complex made from 202 mg of pentynyl copper and 506 mg of $[(CH_3)_2N]_3P$ in 10 mL of Et_2O was added. After 1h at -78°C 437 mg of (R)-(+)-methyl-7-(3-tetrahydropyranyloxy-5-oxo-1-cyclopentyl)-5-(Z)-heptenoatein 3 mL of Et_2O was added. The reaction mixture was stirred at -78°C for 20 min and at -20°C for 1.5 h. After a typical work-up procedure (NH₄Cl solution, extraction with ether) and separation of the reaction products on silica gel (hexane-acetone 10/3) and subsequent deacetalization 4 (150 mg,30%) $[\alpha]_D^{20} = -10.2^\circ$, 5 (44 mg, 9%) were obtained. The structures of the compounds were confirmed by ^{13}C NMR spectra (Bruker AMX-500). The chemical shifts (δ) in CDCl₃ from TMS as a reference were the following:
- 4: 174.0 (C-1), 33.4 (C-2), 24.7 (C-3), 26.7 (C-4), 131.6 (C-5), 126.1 (C-6), 25.5 (C-7), 53.1 (C-8), 213.0 (C-9), 46.4 (C-10), 71.8 (C-11), 54.3 (C-12), 144.5 (C-13), 132.1 (C-14), 200.0 (C-15), 41.1 (C-16), 23.8, (C-17), 31.5 (C-18), 22.5 (C-19), 13.9 (C-20), 51.6 (ester CH₃).
- 5: 174.8 (C-1), 33.4 (C-2), 24.5 (C-3), 26.5 (C-4), 130.7 (C-5), 126.7 (C-6), 24.2 (C-7), 149.8 (C-8), 130.7 C-9), 74.5 (C-10), 50.1 (C-11), 83.9 (C-12), 148.2 (C-13), 127.2 (C-14), 200.7 (C-15), 41.4 (C-16), 23.8, (C-17), 31.5 (C-18), 22.5 (C-19), 13.9 (C-20), 51.8 (ester CH₃). The *cis*-configuration of hydroxyl groups was confirmed on the bases of H-10 chemical shift at 4.65 ppm. For 4-cyclopentene-*trans*-1,3-diols this shift should be around 4.9 ppm as confirmed by comparing the ¹H chemical shifts of pairs of model compounds *cis* and *trans*-isomers of 1-acetylhydroxy-3-hydroxy-4-cyclopentene(a) and methyl-7-(3,5-dihydroxy-5-methyl-1-cyclopentenyl)heptenoate (b), where *cis* carbinol protons resonate at 4.65 (a) and 4.63 (b) and *trans*-carbinol protons at 4.83 (a) and 4.95 (b) ppm.

1744 M. LOPP et al.

- 13. The isomers of **6** were separated chromatographically on silica gel and their ^{1}H and ^{13}C NMR spectra were recorded. They had too close ^{1}H and ^{13}C chemical shifts and ^{1}H - ^{1}H coupling constants to differentiate between the diastereomers. ^{13}C and (^{1}H) chemical shift assignments confirm the structure of these isomers: 51.70 (3.684) (OCH₃), 174.62 (C-1), 33.27 (2.34) (CH₂-2), 24.53 (1.69) (CH₂-3), 26.46 (2.04 and 2.09) (CH₂-4), 130.51 (5.51) (CH-5), 127.12 (5.60) (CH-6), 24.10 (2.87 and 2.68; other isomer 2.86 and 2.67) (CH₂-7), 150.69 (C-8), 129.72 (5.65; other isomer 5.64) (CH-9), 73.44 (4.66; other isomer 4.65) (CH-10), 50.92 (1.90 and 2.60;) (CH₂-11), 83.72 (C-12), 133.70 (5.589; other isomer 5.582) (CH-13), 131.93 (5.80; other isomer 5.77;) (CH-14), 72.25 (4.16, other isomer at 4.14) (CH-15), 37.44 (1.54) (CH₂-16), 25.08 (1.34) (CH₂-17), 31.75 (1.30) (CH₂-18), 22.60 (CH₂-19), 14.00 (0.90) (CH₃-20). The isomers are relatively unstable at room temperature in chloroform but stable in ethanol.
- 14. The oxidation procedure was as follows: To a solution of 12 mg of 5 in 0.6 mL of Et₂O/acetone (1/1) 0.01 mL of Jones reagent was added at 0°C. After 0.5 h the reagent excess was destroyed by 0.2 mL of i-PrOH (10 min) and the mixture poured into brine solution. The product was extracted with ether and purified on silica gel (hexane/i-PrOH 25/1) to afford 11 mg of 7 (87%). 13 C and (1 H) NMR: 51.70 (3.66) (OCH₃), 174.46 (C-1), 33.04 (2.30) (CH₂-2), 24.33 (1.65) (CH₂-3), 26.43 (2.00 and 2.11) (CH₂-4), 132.45 (5.61) (CH-5), 124.49 (5.57) (CH-6), 25.52 (2.84 and 3.28) (CH₂-7), 179.63 (C-8), 130.38 (6.01) (CH-9), 203.49 (C-10), 51.19 (2.70 and 2.76) (CH₂-11), 79.60 (C-12), 145.86 (6.68) (CH-13), 128.36 (6.55) (CH-14), 199.94 (C-15), 41.47 (2.57) (CH₂-16), 23.69 (1.62) (CH₂-17), 31.40 (1.30) (CH₂-18), 22.42 (1.32) (CH₂-19), 13.87 (0.90) (CH₃-20).
- 15. The methyl esters of $PGF_{2\alpha}$, PGE_2 and 15-oxo- $PGF_{2\alpha}$ were prepared from the corresponding free acids with diazomethane in ether in 88-93% yield.
- 16. Fitzpatrick, F.A.; Wynalda, M.A. Biochemistry 1981, 20, 6129.
- 17. Ohno, K.; Fujiwara, M.; Fukushima, M.; Narumiya, S. Biochem. Biophys. Res. Commun. 1986, 139, 808.
- 18. Ohno, K.; Hirata, M. Biochem. Pharmacol. 1993, 46, 661.
- 19. Our experiments confirm the data^{4,6} that the stereochemistry of 15-hydroxyl group is not essential in the antiproliferative effect of the compound since 6, a mixture of diastereomers, exhibited the same activity as the pure 15(R) or 15(S) isomer of 6.
- 20. This activity was determined by us at the same experimental conditions.
- 21. Samuelsson, B.; Granström, E.; Green, K.; Hamberg, M. Ann. N. Y. Acad. Sci. 1971, 180, 138.

(Received in USA 16 February 1994; accepted 14 June 1994)