PARTICIPATION OF THE 5-ALKOXY GROUP IN ALLYLIC CATION STABILIZATION: CONVERSION INTO Z-ISOMERS

Elvi Muks', Ilme Lõiveke, Tõnis Pehk'

Institute of Chemistry, Estonian Academy of Sciences, Tallinn EE0026, ESTONIA Institute of Chemical Physics and Biophysics, Estonian Academy of Sciences, Tallinn EE0001, ESTONIA

Key Words: allylic cations; alkoxy group participation; conversion into Z-isomers; alkoxyalkylation of 1,3-dienes.

Abstract: Stabilization of an allylic cation with Z-configuration by the 5-alkoxy group increases the Z-isomer content under the conditions of thermodynamic control.

The Lewis acid catalyzed addition of secondary and tertiary alkyl chlorides, such as Ar_2CHCl , $ArC(CH_3)_2Cl^1$, PhC = CCH(Ph)Cl, $PhC = CC(CH_3)_2Cl^2$, and $CH_3CH = CHCH(CH_3)Cl^3$ to 2-methyl-1,3-butadiene (1a) or 2,3-dimethyl-1,3-butadiene (1b) leads to the regionselective and stereospecific formation of (E)1,4-adduct with some oligomeric products. Diene 1a with primary chlorides, such as $(CH_3)_2C = CHCH_2Cl$ (2)⁴ or $(CH_3)_2C = C(CH_3)CH_2Cl^5$ affords, along with the major (E)1,4-adduct (up to 60%), some isomeric adducts, while no more than 3% of (Z)1,4-adduct was observed only in the reaction of 1a with 2⁴. But the high content of (Z)1,4-adducts (20-40%) was obtained upon the addition of isopropoxymethyl chloride⁶ or methoxymethyl chloride (3)⁷ to 1a.

We investigated the product distribution at reactant conversion from low to high degrees in the reaction of 3 with 1a or 1b in the presence of SnCl₄ catalyst⁸. In both of these reactions mixtures of (E) and (Z)1,4-

Table. Product Distribution in the Reaction of 1a or 1b with 3. Catalyst SnCl₄, at 23°C, the initial molar ratio of RCl:diene was 1:18-10.

Diene	Conversion, %	Yield of adducts in product, %	Distribution of adducts, %		
			4a or 4b	5a or 5b	6a or 6b
la la	7		65	25	10
	18	86	63	25	12
	40	82	65	18	17
	65	82	66	8	26
1b	8	Ì	44	26	30
	20	84	45	24	31
	46	84	46	18	36
	72	80	44	13	

adducts (4 and 6) and 1,2-adduct (5) were obtained, while the ratio of isomers¹⁰ changed in the course of the reaction as shown in Table. Interpolation of the data to zero-conversion shows that the kinetic control gives approximately the following ratios of allylic isomers: 4a:5a:6a=65:25:10 and 4b:5b:6b=45:25:30.

Our data are in accord with the earlier results^{4, 11} which demonstrate that tertiary allylic chlorides ionize

with Lewis acids more easily. Therefore, 5a and 5b are more prone to subsequent interactions than their primary isomers. However, conversion of 5a and 5b into Zisomers 6a and 6b in the course of the reaction was unexpected, since, in general, allylic chlorides with E-configuration prevail as being thermodynamically more favored than Z-isomers. This may be accounted for the participation of the alkoxy group in the reaction as shown in the Scheme. Stabilization of the cationic intermediate with Z-configuration by the 5alkoxy group is the driving force which increases the Z-isomer content. It has not been demonstrated previously that under conditions of thermodynamic control the conversion of allylic chlorides into Zisomers may be achieved due to the participation of the 5-alkoxy group.

References and Notes

- 1. Mayr, H.; Striepe, W. J. Org. Chem., 1983, 48, 1159-1165.
- Mayr, H.; Klein, H. Chem. Ber. 1982, 115, 3528-3546; Mayr, H.; Klein, H. J. Org. Chem. 1981, 46, 4097-4100.
- 3. Petrov, A.A.; Razumova, N.A.; Genusov, M.A. Zh. Obshch. Khim. (Russ.), 1958, 28, 1128-1132.
- 4. Lääts, K.V.; Muks E.A. Z. Org. Khim. (Russ.) 1974, 10, 162-164.
- 5. Muks, E.; Erm, A.; Pehk, T. Proc. Estonian Acad. Sci. Chem. 1993, 42, 10-15.
- Kaal, T.A.; Erm, A.J.; Lindsaar, A.U. Zh. Org. Khim. (Russ.) 1975, 11, 1809-1810;
 Lääts, K.; Kaal, T.; Scmidt, M.; Kudrjavtseva, K. Proc. Acad. Sci. Estonian SSR. Chem. 1980, 29, 232-234.
- 7. Burger, B.V.; Garbers, C.F.; Scott, F. J. S. Afr. Chem. Inst. 1976, 29, 143-148.
- 8. The procedure was performed as described earlier using no solvent.
- 9. The structures of 4a, 5a, and 6a were identified earlier⁷. The structures of 4b, 5b, and 6b were confirmed on the basis of their assigned ¹³C an ¹H (in parentheses) chemical shifts δ_{TMS} from C-1 to C-8. Shifts for 4b: 46.58 (3.92), 126.68, 132.56, 34.89 (2.19), 70.41 (3.23), 58.20 (3.13), 16.46 (1.62), 17.84 (1.63); 5b: 112.24 (4.90 and 4.73), 147.09, 72.95, 41.88 (2.05), 69.16 (3.25), 58.20 (3.11), 19.08 (1.73), 29.32 (1.56); 6b: 46.38 (3.95), 126.82, 132.48, 34.38 (2.24), 70.88 (3.24), 58.25 (3.14), 16.82 (1.60), 18.79 (1.57).
- 10. The isomeric composition of adducts was established by GC. The relative retention times on a glass capillary column (37mx0.3mm) with the TCEP liquid phase at 70°C were as follows: 4a 1.79, 5a 0.47, 6a 1.37, 4b 2.04, 5b 0.81, 6b 1.86, and the reference o-dichloro benzene 1.00.
- 11. Lääts, K.V.; Teng, S.E.; Savits, T.O. Zh. Org. Khim. (Russ.) 1974, 10, 164-167.

(Received in UK 26 May 1993)