New Antiproliferative 9,11-Secosterol from Soft Coral Gersemia fruticosa

Reet Koljak, Tõnis Pehk', Ivar Järving, Milana Liiv, Annika Lopp, Külliki Varvas, Aino Vahemets, Ülo Lille, Nigulas Samel'

Institute of Chemistry, Estonian Academy of Sciences, Akadeemia tee 15, EE0026 Tallinn, ESTONIA

*Institute of Chemical Physics and Biophysics, Estonian Academy of Sciences, Rävala pst. 10, EE0100 Tallinn, ESTONIA

Abstract: A new highly antiproliferative 9,11-secosterol 1 was isolated from the White Sea soft coral Gersemia fruitcosa. The structure was established by spectroscopic data.

In the course of our screening program for bioactive compounds from cold sea marine organisms a new 9,11-secosterol 1 with antiproliferative activity was isolated from *Gersemia fruticosa (Nephdeidae, Alcynacea)*. The growth inhibitory activity (IC₅₀) estimated on two different tumor cell lines in vitro was 1 and 3 μ g/ml for Ehrlich carcinoma and human erythroleukemia K-562 cells, respectively.

The EtOAc extract of freeze-dried animals (collected at the Gulf of Kandalaksha, White Sea, Arctic Circle, at a depth of 20-25m and temperature about 0°C) was partitioned between hexane and EtOH/0.2N KHCO₃ in water (1:1, v/v). The basic layer, extracted after acidification with EtOAc, was repeatedly chromatographed on silica gel (EtOAc/Hex, Acetone/CHCl₃, i-PrOH/Hex) followed by RP-HPLC (CH₃CN/H₂0) to give pure 24-nor-9,11-seco-11-acetoxy-3 β ,6 α -dihydroxycholesta-7,22(E)-dien-9-one 1 as colourless oil, $[\alpha]_{\rm D}^{22} + 23^{\circ}$ (c 0.17, MeOH), UV (EtOH) $\lambda_{\rm max}$ 239 (ϵ 4,000) nm.

The molecular formula of 1 was established as $C_{22}H_{44}O_5$ by HRMS (m/z 460.3192; calcd. 460.3189). Its structure was elucidated by ¹H and ¹³C NMR 1D and 2D NMR spectroscopy on a Bruker AMX-500 instrument. ¹H-¹H COSY, ¹H-¹³C COSY and inverse detected longrange ¹H-¹³C 2D correlations were measured using standard pulse programs. The inverse detected long-range correlation was crucial to complete the structure via the quaternary carbons. The chemical shifts of 1 in CDCl₃ and C₄D₆ solutions are reported in Table.

The trans junction of A/B rings was determined by the

¹³C chemical shifts of C-5, C-10 and C-19. An equatorial β-orientation of OH at C-3 follows from a comparison with other sterols¹ and the recently found 9,11-secosterol $(3\beta,6\alpha-dihydroxy-9-oxo-dihydro$

9,11-secoclest-7-en-11-al) $[\alpha]_D$ +5.0° (c=0.2, CHCl₃)². The hydroxyl group at C-6 is α -oriented due to 9.8 Hz coupling between H-6 and H-5. The side chain double bond has E configuration on the basis of ¹³C chemical shifts of model olefins³ and 15.4 Hz vicinal coupling between the olefinic protons. The orientation of substituents at C-13, C-14 and C-17 is the same as in related 9,11-secosterol² and herbasterol⁴ due to the close values of carbon chemical shifts around these carbon atoms. The ichthyotoxic herbasterol (9,11-seco- 2β ,3 α ,6 β ,11,19-pentahydroxy-5 β -cholesta-9-one)⁴ is the only marine 9,11-secosterol so far isolated (see also⁵) whose biological activity has been reported.

in CDC13(A		in C ₆ D ₆ (b		
Atoms	δ 13 _C	δ ¹ H	δ 13 _C	δ ¹ H
1	31.74	1.89 / 1.47	32.34	1.91 / 1.41
2	30.41	1.92 / 1.46	30.92	1.60 / 1.23
3	69.96	3.59	69.86	3.11
4	32.71	2.30 / 1.44	33.07	2.07 / 1.11
5	48.57	1.77	48.66	1.36
6	69.37	4.27	69.19	3.68
1 2 3 4 5 6 7	146.18	6.52	146.60	6.25
8 9	136.72	l -	136.49	-
9	203.69	i -	203.13	_
10	44.70	(-	44.77	_
11	61.47	4.17	61.65	4.44 / 4.48
12	36.90	1.62 / 1.24	37.44	1.85 / 1.49
13	45.86	-	46.23	- ,
14	42.63	3.25	42.92	3.40
15	25.47	1.72 / 1.46	25.75	1.57 / 1.40
16	26.74	1.57	26.94	1.58
17	50.69	1.71	50.96	1.72
18	17.31	0.67	17.60	0.61
19	16.08	1.12	15.98	0.85
20	38.35	2.16	38.72	2.17
21	21.41	1.04	21.74	1.10
22	131.97	5.25	132.82	5.27
23	136.00	5.29	136.08	5.31
25	31.02	2.19	31.47	2.23
26	22.66	0.95	22.89	1.00
27	22.55	0.95	22.80	1.01
OAc	21.17	2.02	20.71	1.71
	171,24	-	171.93	-

a) Solvent at 77.0 and 7.27 ppm

Acknowledgements

The coral samples were collected and identified by Drs. Vladimir Buryakov and Aleksei Sukhotin, Kartesh White Sea Biological Station. We also thank Dr. Jorma Matikainen, Helsinki University, for HRMS study.

References

- 1. Blunt, J. W.; Stothers, J. B. Org. Magn. Reson., 1977, 9, 439.
- 2. Migliuolo, A.; Piccialli, V.; Sica, D. Tetrahedron, 1991, 47, 7937.
- 3. De Haan, J. W.; Van de Ven, L. J. M. Org. Magn. Reson., 1973, 5, 147.
- 4. Capon, R. J.; Faulkner, D. J. J. Org. Chem., 1985, 50, 4771.
- (a) Enwall, E. L.; Van der Helm, D.; Nan Hsu, I.; Pattabhiraman, T.; Schmitz, F. J.; Spraggins, R. L.; Weinheimer, A.J. J. Chem. Soc. Chem. Commun., 1972, 215. (b) Kazlauskas, R.; Murphy, P. T.; Ravi, B. N.; Sanders, R. L.; Wells, R. J. Aust. J. Chem., 1982, 35, 69. (c) Bonini, C.; Cooper, C. B.; Kazlauskas, R.; Wells, R. J.; Djerassi, C. J. Org. Chem., 1983, 48, 2108.

b) Solvent at 128.0 and 7.15 ppm