January 1993 SYNTHESIS 91

A Highly Stereoselective Synthesis of a New Propargylic Epoxide: (3R,4S)-1-tert-Butyldimethylsilyl-3,4-epoxy-1-pentyne

Tonis Kanger,*a, Milana Liiv,a Tonis Pehk,b Margus Loppa

^a Institute of Chemistry, Estonian Academy of Sciences, Akadeemia tee 15, EE0108, Tallinn, Estonia

^b Institute of Chemical and Biological Physics, Estonian Academy of Sciences, Rävala pst. 10, EE0001, Tallinn, Estonia Received 10 July 1992

The synthesis of a novel enantiopure propargylic epoxide, (3R, 4S)-1-tert-butyldimethylsilyl-3,4-epoxy-1-pentyne (9), from a readily available tartaric acid derivative, (4R,5S)-5-{[(tert-butyldimethylsilyl)oxy]methyl}-2,2-dimethyl-1,3-dioxalane-4-carbaldehyde (1), is described.

Optically active propargylic compounds are important intermediates in the synthesis of different natural compounds. Their reaction with organocopper reagents is one of the most popular ways of preparing allenes. The use of enantiopure starting material enables the obtention of optically active allenes with high biological activity. Enantiopure propargylic epoxides are easily available via Sharpless epoxidation of an enyne system, but this method only leads to alkynyl epoxy alcohols. The direct epoxidation of a nonallylic enyne system with a chiral manganese complex is also possible and proceeds in high enantioselectivity, but this method yields a mixture of cis- and trans-epoxides.

In our previous communication,8 we reported an efficient method for the synthesis of an enantiopure propargylic epoxide bearing a terminal epoxy group. In this paper we present a highly stereoselective synthesis of epoxide 9. The synthesis started from aldehyde 1 which was prepared from the tartaric acid ester according to known procedure.9 Aldehyde 1 was treated with methyllithium to give a 9:1 mixture of epimeric alcohols 2a and 2b which are easily separable by column chromatography on silica gel (Scheme). 13C and 1H NMR spectra of the R-Mosher's ester of alcohols refer to the S-configuration at C-2 of the main product giving high field shifts for the end methyl group in 2b and for C-3 and the geminal methyl groups of the dioxolane ring in 2a. Surprisingly, benzylation of the hydroxy group in 2a proceeded in a low isolated yield (30%). However, the yield was considerably improved (up to 65%) when a catalytic amount of tetrabutylammonium iodide and 18-crown-6 was added to the reaction mixture. 10 The quantitative desilylation and chlorination under nonacidic conditions 11 afforded chloroalkoxy compound 5 in high yield (80%). The base-induced elimination of 5 with lithium diisopropyl-

1. Separation of isomers
2. NaH/BnBr/Bu₄NI
18-crown-6/THF
0°C to 50°C, 4h

OBn
3

amide (LDA) led to propargylic alcohol 6. It has been previously stated that no epimerization takes place under these conditions. ¹² In our experiments we also did not find any trace of the diastereoisomeric alcohol by using HPLC and NMR. The comparison of ¹³C chemical shifts of the end methyl and benzylic groups with the corresponding atoms in *syn* and *anti* isomers of 4-hydroxy-5-benzyloxy-1-hexenes¹³ refers to *anti* configuration of substi-

Table. ¹³C and ¹H Chemical Shifts of Compounds 2, 5, 6, 8, 9 Prepared

Compound	NMR	Assignments											
		1	2	3	4	5	SiMe ₂		t-Bu		gem-N	Лe	осо
2a	13C	19.30	68.07	83.86	79.32	64.21	- 5.57,	- 5.63	18.26,	25.80	26.74,	26.90	108.63
	1H	1.23	3.78	3.62	3.88	3.66, 3.86	0.08			0.88	1.36,	1.37	
2b	¹³ C	19.60	67,44	82.68	77.62	63.82	-5.48	-5.64	18.26,	25.82	27.18,	27.25	109.11
	¹ H	1.20	3.79	3.79	3.93	3.76, 3.78	0.05		_	0.87	1.37,	1.39	-
2a -(<i>R</i>)-MPTA	¹³ C	16.37	73.69	79.09	78.17	62.79	- 5.41.	-5.61	18.33.	25.88	26.91,	26.98	109.57
	¹H	1.43	5.20	4.01	3.75	3.27, 3.52	0.02			0.88	1.30,	1.35	
2b- (<i>R</i>)-MPTA	13C	16.22	72.84	80.21	77.59	63.76		-5.48	18.33.	25.97		27.36	109.71
	1 H	1.31	5.27	4.01	_ a	_a	,	0.07		0.89	1.35,		***
5	13C	45,73	79.74	81.05	76.05	16.50	-			_		27.13	109.83
	¹H	3.62		01.00	70.05	10.00					,		
	••	3.77	4.13	3.77	3.62	1.32	_		_		1.40,	1.45	
6 ^b	¹³ C	74.11	81.71	64.98	76.67	14.58	-			_	_	-	
	¹H		_	4.43	3.70	1.31	_	-		_	_		
8	13C		93.09	45.49	71.11	19.32	- 4.93		16 60	25.98		~	
	¹H			4.44	3.94	1.40		_	-	0.95	_	-	
9	¹³ C	101.05	89.39	45.59	54.11	14.65	-4.77			26.00		-	
	¹H		. 07.37	3.42°	3.16°	1.44	0.127		10.74,	0.945		_	

^a Obscured by signals from major isomer 2a.

tuents in **6**. Propargylic alcohol **6** was disilylated to afford 7 in 60 % yield (40 % of starting material was recovered as *O*-silylated product). Debenzylation followed by a simultaneous highly stereoselective bromination of 7 with boron tribromide⁸ afforded bromohydrin **8**. The diastereomeric purity of this compound was determined by HPLC and also by ¹H and ¹³C NMR, and found to exceed 98 %. Under basic conditions bromohydrin **8** was converted into target cis epoxide **9** in 92 % yield. *cis*-Configuration at the oxirane ring is confirmed by a 4.0 Hz vicinal coupling constant.⁷

The absolute configuration of target compound 9 was determined by its regioselective reduction to homopropargylic alcohol with lithium aluminum hydride. The optical rotation ($[\alpha]_D - 19.8^\circ$) confirms the 4S-configuration in 9 ($[\alpha]_D - 20.0^\circ$ for (S)-4-pentyn-2-ol¹⁴).

Since tartaric acid is available in both enantiomeric forms, the enantiomeric epoxide of 9 may also be prepared by applying the present method.

IR spectra were measured with a Specord IR-75 spectrometer. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra were obtained on a Bruker AM-500 spectrometer in CDCl₃ solution. The chemical shifts are reported in relative to TMS from solvent (CDCl₃) signal ($\delta_{\mathrm{H}}=7.27,\,\delta_{\mathrm{C}}=77.0$) and are presented in the Table. Optical rotations were obtained at 20 °C using a Polamat A polarimeter. Microanalyses were obtained using a Hewlett-Packard 178 element analyser. Mass spectra were recorded on a Hitachi M80B spectrometer at an ionizing potential 70 eV. HPLC analyses were performed using a LKB liquid chromatograph equipped with a UV spectrophotometric detector (206 nm, 254 nm; column Separon SGX 3×300 mm). Merck silica gel 60 (230–400 mesh) was used for column chromatography. THF was distilled from LiAlH₄ before use.

Compound 1 was prepared according to Ref. 9. Due to its instability it was used in the next step without purification.

(3S,4S)-5-tert-Butyldimethylsiloxy-3,4-isopropylidenedioxy-2-pentanol 2a and 2b (Mixture of 2S and 2R Isomers):

To a stirred $-20\,^{\circ}\text{C}$ solution of aldehyde 1 (3.70 g, 13.5 mmol) in THF (40 mL) at $-20\,^{\circ}\text{C}$ was added dropwise MeLi (12 mL, 1.44 M

in Et₂O, 17.3 mmol) under Ar. The mixture was allowed to warm to 0°C and was stirred at this temperature for 4 h. After addition of brine (20 mL) the layers were separated and the aqueous layer was extracted with EtOAc (3×50 mL). The combined extracts were dried (MgSO₄) and the solvent was evaporated on a rotatory evaporator. Isomers 2a and 2b were separated by column chromatography on silica gel using hexane/EtOAc (100: 4) as eluent to give 2.78 g of 2a and 0.31 g of 2b; total yield: 79%; [α]_D - 8.9° (c = 8.0, MeOH).

C₁₄H₃₀O₄Si calc. C 57.89 H 10.41 (290.5) found 57.76 10.45

IR (film): v = 3360, 2980, 1380, 1260, 1150, 1090, 840 cm⁻¹. MS: m/z (%) = 275 (M⁺ – CH₃ 22), 233 (12), 175 (63), 131 (100), 117 (72), 75 (93).

(2S,3S,4S)-4-Benzyloxy-1-*tert*-butyldimethylsiloxy-2,3-isopropylidenedioxypentane (3):

To a stirred suspension of NaH (55% dispersion in oil, 57 mg, 1.3 mmol) in THF (10 mL) at 0°C was added dropwise alcohol 3 (379 mg, 1.3 mmol) in THF (3 mL). Stirring was continued for 1 h allowing the mixture to warm up to r.t. The mixture was cooled to 0°C and Bu₄NI (48 mg, 0.13 mmol) and 18-crown-6 (3.4 mg, 0.01 mmol) were added in one portion. To this mixture benzyl bromide (223 mg, 1.3 mmol) was added, the resulting mixture was heated to 50°C and stirred at this temperature for 4 h. The reaction was quenched with brine (5 mL), the layers were separated and the aqueous layer was extracted with EtOAc (3 × 30 mL). The combined extracts were washed with aqueous Na₂S₂O₃ (30 mL), dried (MgSO₄) and the solvent was evaporated on a rotatory evaporator. The reaction product was purified by column chromatography on silica gel (hexane/EtOAc, 100:2) affording 3; yield: 321 mg (65%); [α]²⁰ + 9.4° (c = 7.15, CH₂Cl₂).

C₂₁H₃₆O₄Si calc. C 66.27 H 9.53 (380.6) found 66.17 9.51

IR (film): v = 3030, 2870, 1550, 1490, 1260, 1090, 840 cm⁻¹. MS: m/z (%) = 365 (M⁺ – CH₃, 1), 235 (3), 187 (3), 135 (16), 91 (100), 75 (5).

(2S,3S,4S)-4-Benzyloxy-2,3-isopropylidenedioxy-1-pentanol (4):

To a solution of 3 (250 mg, 0.66 mmol) in THF (10 mL) was added Bu_4NF (1 M in THF, 0.66 mL, 0.66 mmol) and the mixture was stirred at r. t. for 15 min. The mixture was poured into water (10 mL) and extracted with EtOAc (3 × 30 mL), dried (MgSO₄) and evapora-

b Benzyl group: ¹³C: 71.06, 137.93(s), 127.70(o), 128.30(m), 127.72(p); ¹H: 4.57, 4.68, 7.33–7.38.

^c Vicinal coupling of J = 4.0 Hz refers to *cis* configuration.

January 1993 SYNTHESIS 93

ted to give 4; yield: 175 mg (quant.). It was further used without purification. An analytical sample was obtained by chromatography on silica gel (hexane/EtOAc, 10:1); $[\alpha]_D + 39.8^\circ$ (c = 2.86, CH₂Cl₂). C₁₅H₂₂O₄ calc. C 67.65 H 8.33 (266.3) found 67.74 8.31

IR (film): v = 3300, 2980, 1560, 1480, 1390, 1220, 1090 cm⁻¹. MS: m/z (%) = 251 (M⁺ – CH₃, 4), 208 (3), 131 (23), 91 (100), 59 (60).

(2R,3S,4S)-4-Benzyloxy-1-chloro-2,3-isopropylidendioxypentane (5):

A solution of 4 (175 mg, 0.66 mmol) and Ph₃P (260 mg, 1 mmol) in anhydr. CCl₄ (0.38 mL) was stirred at 60 °C for 4 h. The mixture was allowed to cool to r.t. and was triturated with hexane (5 × 2 mL). The insoluble residue was filtered and the crude product and passed through a short column of silica gel eluting with hexane/EtOAc (100:4) to give 5 (150 mg, 80 %); $[\alpha]_D + 30.7^\circ$ (c = 2.72, CH₂Cl₂).

C₁₅H₂₁ClO₃ calc. C 63.26 H 7.43 (284.8) found 63.17 7.40

IR (film): v = 3030, 2890, 1570, 1490, 1260, 1120, 1090 cm⁻¹. MS: m/z (%) = 269/271 (6), 226/228 (2), 149/151 (28), 135 (16), 91 (100), 59 (28)

(3R,4S)-4-Benzyloxy-1-pentyn-3-ol (6):

To a stirred solution of diisopropylamine (227 mg, 2.25 mmol) in THF (5 mL) was added dropwise BuLi (1.6 M in hexane, 1.41 mL, 2.25 mmol) at $-30\,^{\circ}$ C under Ar and the mixture was stirred for 30 min. The solution was cooled to $-78\,^{\circ}$ C, chloride 5 (128 mg, 0.45 mmol) was added in THF (1 mL) and the mixture was stirred at this temperature for 30 min. The mixture was allowed to warm up to $0\,^{\circ}$ C during 30 min and quenched with sat. aq NH₄Cl (2 mL). The solution was extracted with Et₂O (4 × 20 mL), dried (MgSO₄) and the solvents evaporated in vacuo. Flash chromatography on silica gel (hexane/EtOAc, 10:1) afforded propargylic alcohol 6, yield: 70 mg (82%); mp 46-47°C. [α]_D + 7.0° (c = 3.21, CH₂Cl₂).

C₁₂H₁₄O₂ calc. C 75.76 H 7.42 (190.2) found 75.84 7.46

IR (film): $v = 3360, 2890, 1560, 1490, 1160, 1090 \text{ cm}^{-1}$.

MS: m/z (%) = 160 (2), 135 (41), 91 (100).

(3R,4S)-1-tert-Butyldimethylsilyl-3-tert-butyldimethylsiloxy-4-benzy-loxy-1-pentyne (7):

To a solution of alcohol 6 (58 mg, 0.31 mmol) in THF (5 mL) was added BuLi (1.6 M in hexane, 0.38 mL, 0.61 mmol) at $-78\,^{\circ}$ C. The mixture was allowed to warm to $-20\,^{\circ}$ C and t-BuSiMe₂Cl (138 mg, 0.92 mmol) in THF (1 mL) was added. The mixture was stirred for 4 h while warming up to r. t., and quenched with sat. aq NH₄Cl (2 mL). The mixture was extracted with hexane (3 × 20 mL), washed with brine, dried (MgSO₄) and the solvents were evaporated. Column chromatography on silica gel eluting with hexane afforded disilylated compound 7; yield: 78 mg (60 %); [α]_D $-42.4\,^{\circ}$ (c=3.64, CH₂Cl₂).

 $C_{24}H_{42}O_2Si_2$ calc. C 68.84 H 10.11 (418.8) found 68.91 10.13

IR (film): v = 2980, 2890, 2240, 1480, 1120, 850, 840 cm⁻¹.

MS: m/z (%) = 361 (1), 171 (3), 131 (16), 91 (100), 75 (7), 73 (53).

(3S,4S)-3-Bromo-1-tert-butyldimethylsilyl-1-pentyn-4-ol (8):

To a stirred solution of 7 (84 mg, 0.20 mmol) in anhydr. CH_2Cl_2 (4 mL) BBr₃ (50 mg, 0.20 mmol) was added at stirring at $-78\,^{\circ}$ C. After stirring for 2 h at this temperature, aq NaHCO₃ (1 mL) was added. The mixture was allowed to warm to r.t., extracted with Et₂O (3 × 20 mL), dried (MgSO₄) and the solvents were evaporated; yield: 50 mg (91 %). The crude product was used in the next step without purification. An analytical sample was obtained by chromatography on silica gel (hexane/EtOAc, 100:5); [α]_D -17.3° (c=0.93, CH_2Cl_2).

C₁₁H₂₁BrOSi calc. C 47.65 H 7.63 (277.3) found 47.55 7.59

IR (film): v = 3300, 2980, 1260, 1040, 840, 820 cm⁻¹.

MS: m/z (%) = 219/221 (1), 196 (1), 180 (7), 139 (44), 123 (100), 75 (37)

(3R,4S)-1-tert-Butyldimethylsilyl-3,4-epoxy-1-pentyne (9):

A solution of 8 (70 mg, 0.25 mmol) and K_2CO_3 (52 mg, 0.38 mmol) in 1:1 mixture of acetone/ H_2O (10 mL) was stirred at r. t. for 30 min. Acetone was evaporated in vacuo, the mixture was extracted with Et_2O (3 × 20 mL), washed with brine, dried (MgSO₄) and the solvents were evaporated. The residue was passed through as silica gel column eluting with pentane to give 9; yield: 45 mg (92 %); $[\alpha]_D$ – 35.2° (c = 2.91, CH_2Cl_2).

C₁₁H₂₀OSi calc. C 67.68 H 10.27 (196.4) found 67.74 10.29

IR (film): $v = 3060, 2240, 1370, 1260, 860, 840, 820 \text{ cm}^{-1}$.

MS: m/z (%) = 196 (M⁺, 10), 139 (100), 97 (37), 83 (53), 75 (67).

We thank the Estonian Science Foundation for financial support and Dr. A. Müürissepp for measuring MS.

- Midland, M. M. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: 1983; Vol. 2; Part A, p 64.
- (2) Alexakis, A; Marek, I.; Mangeney, P.; Normant, J. F. J. Am. Chem. Soc. 1990, 112, 8042
- (3) Pasto, D.J. Tetrahedron 1984, 40, 2805.
- (4) Huguet, J.; Carmen Reyes, M. Tetrahedron Lett. 1990, 31, 4279. Gooding, O. W.; Beard, C. C.; Jackson, D. Y.; Wren, D. L.; Cooper, G. F. J. Org. Chem. 1991, 56, 1083.
- (5) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
- (6) Oehlschlager, A. C.; Czyzewska, E. Tetrahedron Lett. 1983, 24, 5587
- (7) Lee, N.H.; Jacobsen, E.N. Tetrahedron Lett. 1991, 32, 6533.
- (8) Lopp, M.; Kanger, T.; Müraus, A.; Pehk, T.; Lille, Ü. Tetrahedron: Asymmetry 1991, 2, 943.
- Iida, H.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 1987, 52, 3337.
- (10) Nemoto, H.; Takumatsu, S.; Yamamoto, Y. J. Org. Chem. 1991, 56, 1321.
- (11) Gruber, L.; Tömösközi, I.; Radics, L. Synthesis 1975, 708.
- (12) Kang, S.K.; Lee, D.H.; Lee, J.M. Synlett 1990, 591.
- (13) Brown, H.C.; Bhat, K.S.; Randad, R.S. J. Org. Chem. 1989, 54, 1570.
- (14) Jacobson, R.; Taylor, R.J.; Williams, H.J.; Smith, L.R. J. Org. Chem. 1982, 47, 3140.