

Natural Product Letters

ISSN: 1057-5634 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/gnpl19

A New Series of Natural Prostaglandins Identification of 1a,1b-dihomo-2,3-didehydro-PGE₂ in Ram Seminal Vesicles

Ivar Järving , Madis Lõhmus , Karin Valmsen , Tõnis Pehk , Milana Liiv , Ülo Lille & Nigulas Samel

To cite this article: Ivar Järving , Madis Lõhmus , Karin Valmsen , Tõnis Pehk , Milana Liiv , Ülo Lille & Nigulas Samel (1993) A New Series of Natural Prostaglandins Identification of 1a,1b-dihomo-2,3-didehydro-PGE $_2$ in Ram Seminal Vesicles, Natural Product Letters, 2:2, 111-114, DOI: 10.1080/10575639308043794

To link to this article: http://dx.doi.org/10.1080/10575639308043794

	Published online: 04 Oct 2006.
	Submit your article to this journal $oldsymbol{arGeta}$
ılıl	Article views: 4
a a	View related articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gnpl19

A NEW SERIES OF NATURAL PROSTAGLANDINS IDENTIFICATION OF 1a,1b-DIHOMO-2,3-DIDEHYDRO-PGE₂ IN RAM SEMINAL VESICLES

IVAR JÄRVING*, MADIS LÕHMUS, KARIN VALMSEN, TÕNIS PEHK*, MILANA LIIV, ÜLO LILLE, NIGULAS SAMEL

Institute of Chemistry, Estonian Academy of Sciences, Akadeemia tee 15, EE0026 Tallinn, ESTONIA "Institute of Chemical and Biological Physics, Estonian Academy of Sciences, Rävala pst. 10, EE0100 Tallinn, ESTONIA

(Received for Publication 1 December 1992)

Abstract: A novel natural E-prostaglandin - 1a,1b-dihomo-2,3 didehydro-PGE₂ (1) was isolated from ram seminal vesicles and its structure was elucidated by MS and NMR analysis.

Key Words: Ram seminal vesicles, natural E-prostaglandin

Ram seminal vesicles (RSV) contain a large amount of the primary E-prostaglandins, viz. PGE_1 , PGE_2 and PGE_3^1 , derived from dihomo- γ -linolenic ($C_{20:3}\omega6$), arachidonic ($C_{20:4}\omega6$) and eicosapentaenoic ($C_{20:5}\omega3$) acids, respectively. In addition, a strong selective inhibitor of platelet aggregation, 5,6-dihydro- PGE_3^2 , was recently described in the same tissue³. The present work reports the identification of a new natural prostaglandin, 1a,1b-dihomo-2,3-didehydro- PGE_2 (1), in RSV. Its obvious precursor, all cis-4,7,10,13,16-docosapentaenoic acid ($C_{22:5}\omega6$), can be biosynthesized in mammals by the chain elongation of arachidonic acid and subsequent delta-4 desaturation of adrenic acid ($C_{22:4}\omega6$). Previously it was found that both the docosaenoic acids mentioned above are present in the phospholipids of seminal vesicles⁴ and, therefore, they can serve as natural precursors of prostaglandins in vitro⁵. Furthermore, it was shown that RSV microsomes convert adrenic acid to 1a,1b-dihomo-prostaglandins E_2 and $E_{2\alpha}$ in

 $vitro^6$. Thus, it seemed plausible that $C_{22}\omega 6$ prostaglandins occur in RSV in detectable amounts.

The E-type prostaglandins were separated from the lipid fraction⁷ of RSV (5 kg)on silica gel using a MeOH/CHCl₃ gradient. The PGE fraction (1.1g) eluted with 3.5% MeOH in CHCl₃ was fractionated by repeated normal and reversed phase preparative HPLC⁸ to give, in addition to PGE₁, PGE₂, PGE₃, 1a,1b-dihomo-PGE₂, 5,6-dihydro-PGE₃, 8-iso-PGE₁, 8-iso-PGE₂, 8-iso-PGE₃, 11 β -8-iso-PGE₁, 15 β -PGE₂ and 15 β -PGE₁, also 5.2 mg of pure compound 1 as colorless oil, [α]_D²² -31° (c 0.6, CHCl₃). 1 was converted with 0.4 N KOH/MeOH to the corresponding PGB compound with ϵ =27,000 at λ max=278.

The molecular formula $C_{22}H_{35}O_5$ was established by negative ion CI-MS (details of MS study are given below) and NMR study⁹.

To elucidate the structure of 1 mass-spectrometrically, the PFB-(TMS)₃-9-enol derivatives of 1 and authentic 1a,1b-dihomo-PGE₂, PGE₂, PGE₁, PGE₃ and 5,6-dihydro-PGE₃ were prepared. The NICI spectrum of 9-enol-1-(TMS)₃-PFB showed a base peak at m/z 593[M-PFB] and two minor peaks 503[M-(PFB+90)] and 413[M-(PFB-2*90)], indicating the presence of one carboxylic and two hydroxyl groups. The EI-MS of the same derivative of 1 showed a molecular ion at m/z-774, as well as ions at m/z 703[M-71]⁺, 684[M-90]⁺, 613[M-(71+90)]⁺, 594[M-2*90]⁺, 523[M-(71+2*90)]⁺, 504[M-3*90]⁺, 483, 441[M-(C1-C7)]⁺, 352, 313, 269, 217 (C9-C11), 181 (PFB), 173 (C15-C20), 73 (a base peak). The fragmentation pattern was similar to that of 1a,1b-dihomo-PGE₂ with the exception of the fact that all high-mass ions above m/z 441 were two mass units lower than the corresponding ones in the spectrum of the latter, indicating the presence of an additional double bond in the molecule of 1. The presence of ions [M-71]⁺, [M-(71+90)]⁺ and 173 demonstrates that the ω-chain of 1 is identical to that of

1a,1b-dihomo-PGE₂ and PGE₂. The fragment ions at m/z 441 (loss of C1-C7) observed in both the spectra indicate that an additional double bond of compound 1 is located in the α -chain. The fragment [M-333]⁺ (loss of α -chain) was dominating in the spectrum of the TMS-PFB derivative of B type PG formed from 1 in alkali.

The location and configuration of the double bonds and substituents in the molecule of 1 were established by 2D 1 H- 1 H and 1 H- 13 C COSY correlations 9 on a Bruker AMX-500 instrument. Data on PGE₁, PGE₂ and other prostaglandins 8,10 confirm unambiguously the substitution pattern and relative configurations of substituents on a 5-membered ring, the 15-hydroxyl group and the C-13,14 E double bond (3 J_{HH}=15.1 Hz). The positions of the two remaining double bonds were elucidated from 2D correlation diagrams. The Z-configuration of the Δ 2 bond follows from the carbon chemical shifts of model 4Z- and 4E-nonenoic acids (cf. C-1b at 22.7 ppm with 22.6 for Z- and 27.8 for the E-isomer of the corresponding acid) 11 . The Z-configuration of the Δ 5 bond is confirmed by the carbon chemical shift of C-7 at 25.1 ppm (cf. C-7 of PGE₂ at 25.2 ppm 8,10) and by the chemical shift of C-4 at 25.5 ppm (cf. C-10 of 8Z,11Z,14Z-hexadecatrienoic acid at 25.7 ppm 12).

References and notes

- 1. S.Bergström (1983) Angew. Chem. Int. Ed. Engl., 22, 858-866.
- (a) N.Samel, I.Järving, M.Lõhmus, A.Lopp, G.Kobzar, V.Sadovskaya, T.Välimäe, Ü.Lille (1987) Prostaglandins, 33, 137-146. (b) G.Kobzar, V.Mardla, I.Järving, M.Lõhmus, A.Vahemets, N.Samel, Ü.Lille (1991) Proc. Estonian Acad. Sci. Chem., 40, 279-300.
- (a) N.Samel, I.Järving, M.Lõhmus, A.Lopp, G.Kobzar, V.Sadovskaya,
 T.Välimäe, Ü.Lille (1986) Proc. Acad. Sci. ESSR. Chem., 35, 75. (b)
 E.H.Oliw, H.Sprecher, M.J.Hamberg (1986) J. Biol. Chem., 261, 2675-2683.
- 4. W.E.M.Lands, B.Samuelsson (1968) Biochim. Biophys. Acta, 164, 426-429.
- 5. The preparation of $C_{20:5}\omega 6$ fatty acid for *in vitro* synthesis of 1 is in progress.
- (a) C.E.Struijik, R.K.Beerthuis, H.J.Pabon, D.A. van Dorp (1966) Rec. Trav. Chim., 85, 1233-1252.
 (b) L.D.Tobias, F.M.Vane, J.R.Paulsrud (1975)

- Prostaglandins, 10, 443-468. (c) L.M.Cagen, R.M.Zusman, J.J.Pisano (1979) Prostaglandins, 18, 617-621. (d) H.Sprecher, M.VanRollins, F.Sun, A.Wyche, P.Needleman (1982) J. Biol. Chem., 257, 3912-3918.
- 7. RSV were ground in the disintegrator followed by homogenization in CHCl₃-MeOH-water and extraction of total lipids: M.Kates (1975) *Techniques of lipidology*. Mir, Moscow, 74. (in Russ.). The neutral lipids extracted from an alkali-water solution of total lipids with hexane were discarded. The lipid fraction containing E-prostaglandins was obtained by extraction of the acidified residue with EtOAc.
- 8. M.Lõhmus, A.Vahemets, I.Järving, N.Samel, Ü.Lille, T.Pehk (1991) *Prep. Chromatogr.*, 1, 279-300.
- 9. ¹³C and ¹H (in parentheses) of **1** in CDCl₃ solution from C-1, 1a, 1b to C-20: 177.29, 33.88(2.37), 22.71(2.36), 129.10(5.38), 127.75(5.36), 25.53(2.77) 129.93(5.37), 125.75(5.29), 25.13(2.36), 54.29(2.12), 214.83, 45.84(2.20 and 2.77), 71.77(4.05), 53.66(2.41), 131.88(5.52), 136.60(5.62), 73.29(4.07), 36.65(1.65 and 1.41), 25.09(1.27), 31.58(1.27), 22.56(1.31), 14.00(0.89).
- (a) T.Pehk, T.Välimäe, N.Samel, M.Lopp, Ü.Lille, E.Lippmaa (1982) Proc. Acad. Sci. ESSR. Chem., 31, 85-90.
 (b) T.Välimäe, T.Pehk, E.Lippmaa, M.Lopp, Ü.Lille (1986) Proc. Acad. Sci. ESSR. Chem., 35, 165-192.
- 11. W.Seidel, J.Kuolle, H.J.Schäfer (1977) Chem. Ber. 110, 3544-3552.
- 12. P. Monaco, L. Previtera (1987) Phytochemistry, 26, 745-747.