UDC 547.594.4 dilay paralle separaglisis has separal to applications as beginning

Koit LÄÄTS\*, Heino RANG\*, Tõnis PEHK\*\*, and Sirje VIITMAA\*

## SYNTHESIS OF 4-METHYLIONONE

A seven-step synthesis of 4-methylionones (1, 2) from 4-bromo-2-methyl-2-pentene is known [1]. We have prepared these isomers by a five-step method from the mixture of methylchloropentenes (3) (4-chloro-2-methyl-2-pentene and 4-chloro-4-methyl-2-pentene) with twice the yield

compared to [1, 2].

In the well-known synthesis of ionone and irone ([3], p. 375 and 398, respectively) the first step is alkylation of acetone with primary allylic chloride (1-chloro-3-methyl-2-butene or 1-chloro-2,3-dimethyl-2-butene) to get 6-methyl-5-heptene-2-one or 5,6-dimethyl-5-heptene-2-one, respectively. By this method it is practically impossible to synthesize 4-methylionones (1) because the alkylation of acetone with secondary allylic chloride (2-methyl-4-chloro-2-pentene) gives a very low yield of the desired intermediate 4,6-dimethyl-5-heptene-2-one. We have elaborated a new scheme for the synthesis of 4-methylionones: trans- and cis-a (1) and b (2).

Methylchloropentenes are obtained by hydrochlorination with gaseous hydrogen chloride from the mixture of methylpentadienes (2-methyl-1,3-pentadiene and 4-methyl-1,3-pentadiene). The starting methylpentadienes were prepared by dehydratation of 2-methylpentane-2,4-diol.

The addition of methylchloropentenes to isoprene proceeds in the presence of SnCl<sub>4</sub> at 20 °C. The yield of 1-chloro-3,5,7-trimethyl-2,6-octadiene (4) was 58%. Primary allylic chloride (4) is separated as a

\* Eesti Teaduste Akadeemia Keemia Instituut (Institute of Chemistry, Estonian Academy of Sciences). Akadeemia tee 15, EE0026 Tallinn. Estonia.

\*\* Eesti Teaduste Akadeemia Keemilise ja Bioloogilise Füüsika Instituut (Institute of

<sup>\*\*</sup> Eesti Teaduste Akadeemia Keemilise ja Bioloogilise Füüsika Instituut (Institute of Chemical Physics and Biophysics, Estonian Academy of Sciences). Rävala pst. 10, EE0001 Tallinn. Estonia.

hexamethylenetetramine quaternary salt (5). From the latter 3,5,7-trimethyl-2,6-octadienal (6) was synthesized by steam distillation (the Sommelet-reaction) (yield 52%). Condensation of (6) with acetone in the presence of alkali yields 6,8,10-trimethyl-3,5-9-undecatriene-2-one (7) (pseudo 4-methylionone). By the cyclization of (7) in the presence of BF3 the target 4-(2,4,6,6-tetramethyl-2-cyclohexene-1-yl)-3-buten-2-one (1) is formed as a mixture of *trans*- and *cis*-isomers along with 4-methyl- $\beta$ -ionone (2). The odour of the synthesized 4-methylionone (1) is very similar to that of  $\alpha$ -irone and it can replace more expensive  $\alpha$ -irone in perfumery compositions.

# Experimental Experimental

Synthesis of 1-chloro-3,5,7-trimethyl-2,6-octadiene (4). To a mixture of 173 g of methylchloropentene isomers and 147 g of isoprene the 2% solution of anhydrous tin tetrachloride was dropwise added by stirring. The reaction temperature was kept at 20°C. The reaction was guenched by the addition of 10 g of carbamide to the mixture. After stirring, settling, and filtration the unreacted starting compounds were distilled off from the mixture in moderate vacuum. They should be recycled. From the 126 g at residue the fraction of 1-chloro-3,5,7-trimethyl-2,6-octadiene (4) was distilled off at 58-62°C (2 torr) with a 74% content of (4), vield 58,2%, 8.1 g of crude product, 5.4 g of dimethylaniline, and 5.4 g of methanol were stirred and left overnight. Then 25 to 50 ml of 50% methanol and 30 ml of petroleum ether were added, mixed, and the layers were separated. The aqueous methanol solution was washed twice with petroleum ether and the methanol was distilled off under moderate vacuum. Toluene was added to the remaining mixture and water was removed as a toluene azeotrope. The residual mixture was heated to 120°C; the dimethylaniline and 1-chloro-3,5,7-trimethyl-2,6-octadiene formed in pyrolysis were distilled in vacuum. The distillate was washed with 10% hydrochloric acid to remove dimethylaniline, and with an aqueous solution of NaCl, dried over sodium sulphate to give 3.2 g of 1-chloro-3,5,7-trimethyl-2,6-octadiene (4) (96% of *E*-isomer), b. p. 65 °C (2 torr);  $n_D^{20} = 1.4742$ ;  $d_D^{20} = 0.9064$ ; purity GLC 99% (*E*- and *Z*-isomers). <sup>13</sup>C chemical shifts of E-isomer:

Synthesis of 3,5,7-trimethyl-2,6-octadienal (6). 100 g of the fraction of 1-chloro-3,5,7-trimethyl-2,6-octadiene (74%), 66.5 g of hexamethylenetetramine, 80 ml of dichloroethane, and 15 ml of methanol were mixed at room temperature for 24 h and then 200 ml of water was added. The mixture was stirred and the layers were separated. The upper aqueous layer was washed with dichloroethane, added to 100 ml of 10% acetic acid and 800 ml of an aqueous solution of NaCl, and stirred. The obtained solution was dropwise added to the distillation flask containing an aqueous saturated solution of sodium chloride, 10% acetic acid. Live steam was simultaneously passed through the flask. Water was distilled off and 39.7 g of 3,5,7-trimethyl-2,6-octadienal (6) was obtained. The purity of the product was 86% (E- and Z-isomers), yield 51.8%.

| Table quine, 30 min of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ob the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.8<br>0.95<br>22.1<br>0.86<br>1.09<br>1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.0<br>0.85<br>29.8<br>0.01<br>30.0<br>1.06<br>1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.6<br>21.6<br>22.0<br>22.0<br>22.0<br>22.0<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.5<br>1.57<br>22.7<br>1.55<br>21.5<br>1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.8<br>2.20<br>27.0<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| about the preferred (QL WE) one of the preferred the microstions, which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 a lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | observed differences (19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| somers a corresponding carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131.9 e.02 134.0 e.10 131.7 e.09 e.09 e.10 131.7 e.09 e.09 e.09 e.10 e.10 e.10 e.10 e.10 e.10 e.10 e.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H 10.75 R-spectrum over C(CH) w 980-993, 1175-CHs. 1700>C=O; 2.730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 148.3<br>6.60<br>148.3<br>6.59<br>142.5<br>7.26<br>7.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4-met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2×1.365)   1.0   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3 |
| chemical shifts of 4-methylionomers of the control | with a control of the | DEGS (4:1) at 100 °C, santy 2017.05 mm) coated with phenyld 174/1717.05 mm) coated with phenyld 174/1717.05 mm) coated with phenyld 174/1717.05 mm/m sampler 250 °C, carrier gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| and 'H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.5<br>2.18<br>2.21<br>2.21<br>1.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mors  In JA Jiel 2 Not 3 10 N pl brans at his milking pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lso<br>en<br>en<br>en<br>en<br>en<br>en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128.9<br>5.36<br>128.8<br>5.37<br>42.4<br>2.09/1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131.1<br>131.1<br>132.6<br>133.0<br>135.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 46.7 2.7 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.23<br>2.23<br>54.0<br>2.51<br>135.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| tions on Bruker AM-500 D correlations were used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Isomers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cis-α δ <sub>C</sub> δ <sub>H</sub> trans-α δ <sub>C</sub> δ <sub>H</sub> δ <sub>C</sub> δ <sub>H</sub> spectrometer see also [4].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Synthesis of 4-methylionone (1). A mixture containing 70 g of acetone and 10 g of 42% caustic soda was dropwise added during 20 min at 20 °C to stirred mixture of 43 g of aldehyde (6). After that the mixture was stirred at 40 °C for 3 h. The mixture was neutralized with acetic acid. Acetone was evaporated and the residue was extracted with toluene. The toluene solution was dried over anhydrous sodium sulphate. The dry toluenic solution was saturated with 19 g of BF<sub>3</sub> at 0 °C. The mixture was stirred at 38 °C for 30 min, neutralized with a 10% caustic soda solution, stirred, and separated. The organic layer was washed with a saturated solution of NaCl at 60 °C. Then toluene was evaporated and 23.4 g of 4-methylionone was isolated from the residue at 85–86 °C (1 torr), purity by GLC 95.1% (ketones),  $n_D^{20} = 1.4951$ ,  $d_D^{20} = 0.9211$ .

Methylionone isomers were analysed from their mixture by <sup>13</sup>C and 'H NMR spectroscopy, using 2D 'H-'H and 'H-<sup>13</sup>C COSY correlations. For the differentiation of *cis*- and *trans*-isomers of (1) chemical shifts of C-5 and geminal methyl groups at C-6 are the most diagnostic. The observed differences (Table 1) give information about the preferred conformations of 1-*trans* and 1-*cis* isomers. C-5 in 1-*cis* and one of the geminal methyls in 1-*trans* have additional gauche interactions, which are reflected in the <sup>13</sup>C chemical shifts of the corresponding carbon

atoms.

Elemental analysis:

Found, %: C 81.6, H 10.9. Calculated, %: C 81.58, H 10.75. IR-spectrum (cm<sup>-1</sup>): 830—CH—C<; 1.140; 1.180; 1.195>C(CH<sub>3</sub>)<sub>2</sub>; 980—993; 1.295—CH=CH; 1.365—C(O)CH<sub>3</sub>; 1.383; 1.430—CH<sub>3</sub>; 1.460; 1.475—CH<sub>3</sub>, —CH<sub>2</sub>—, 1.625; 1.635>C=CH—C(O)—; 1.685; 1.700>C=O; 2.730 (2×1.365).

GLC of chlorides: chromatograph Chrom 5 (Czechoslovakia), glass capillary column (41 m, i. d. 0.25 mm) coated with a mixture of TCEP and DEGS (4:1) at 100 °C, sampler 180 °C, carrier gas Ar (1.5 cm³/min).

GLC of aldehydes and ketones: glass capillary column (47 m, i. d. 0.3 mm) coated with phenyldiethanolamine succinate (PDEAS) at 150 °C, sampler 260 °C, carrier gas Ar (1.5 cm³/min) (Table 2).

Table 2
Relative retention times and composition of 4-methylionone isomers

| 1 6 12 | Isomers        |        |                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                   |  |  |
|--------|----------------|--------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| cis-α  | Not identified |        | trans-α                                                                                                      | Not identified                                                                                                                                      | β                                                                                                                                                                                                 |  |  |
| 10     | 2              | 3      | 4                                                                                                            | 5                                                                                                                                                   | 6                                                                                                                                                                                                 |  |  |
| 1      | 1.04           | 1.07   | 1.14                                                                                                         | 1.30                                                                                                                                                | 1.39                                                                                                                                                                                              |  |  |
| 35.2   | 2.6            | 3.5    | 46.7                                                                                                         | 2.7                                                                                                                                                 | 9.3                                                                                                                                                                                               |  |  |
|        | 2,6-oqiatii    | 1 1.04 | cis-α         Not identified           1         1         2         3           1         1.04         1.07 | cis-a         Not identified         trans-a           1         1         2         3         4           1         1.04         1.07         1.14 | cis-α         Not identified         trans-α         Not identified           1         1         2         3         4         5           1         1.04         1.07         1.14         1.30 |  |  |

NMR spectra were measured from CDCl<sub>3</sub> solutions on Bruker AM-500 spectrometer. Standard pulse programmes for 2D correlations were used. Chemical shifts are referenced from solvent signal ( $\delta_{\rm C}$ =77.0,  $\delta_{\rm H}$ =7.27 ppm).

$$CH_3$$
 $CH_3$ 
 $CH_3$ 

Identified isomers of 4-methylionone

Newman projections along C-6-C-1

## REFERENCES

- Rouvé, A., Stoll, M. Produits à odeur de violette. Helv. Chim. Acta., 1947, 30, 7, 2216.
- 2. Schweizerische Patentschrift N 655087, 27. 03. 1986.
- 3. Gildemeister, E., Hoffmann, F. Die Atherischen Öle. Bd. IIIc. Berlin, 1963.
- 4. Сакс Т., Пехк Т., Ранг Х., Иванов А. Состав ирона, синтезированного на основе реакции теломеризации. Изв. АН ЭССР. Хим., 1978, 27, 4, 230—234.

Received

March 6, 1992

Revised

June 9, 1992

### 4-METUULJONOONI SUNTEES

On toodud 4-(2.4.6.6-tetrametüül-2-tsüklohekseen-1-üül)-3-buteen-2-ooni sünteesi meetod 2-metüül-1,3-butadieeni haloalküleerimisel metüülkloropenteenide isomeeride seguga. Saaday 5-metüülgeranüülkloriid viiakse üle 5-metüültsitraaliks, selle kondensatsioonil atsetooniga saadakse 6.8.10-trimetüül-3.5.9-undekatrieen-2-oon ning viimase tsüklisatsioonil 4-metüülionoon. On esitatud väljaeraldatud puhta 5-metüülgeranüülkloriidi 13C TMRspekter ja lõpp-produkti IP- ja 13C TMR-spektrid.

Койт ЛЭЭТС, Хейно РАНГ, Тынис ПЕХК, Сирье ВИЙТМАА

### СИНТЕЗ 4-МЕТИЛИОНОНА

Описан метод синтеза 4-(2,4,6,6-тетраметил-2-циклогексен-1-ил)-3-бутен-2-она галоалкилированием 2-метил-1,3-бутадиена смесью изомеров метилхлорпентенов, превращением получаемого 5-метилгеранилхлорида в 5-метилцитраль, конденсацией последнего с ацетоном в 6,8,10-триметил-3,5,9-ундекатриен-2-он и циклизацией последнего. Приведены ЯМР <sup>13</sup>С-спектры выделенного чистого 5-метилгеранилхлорида, а также ИК- и ЯМР 13С-спектры целевого продукта.

-CH-X1.025: 1(0) C-CH-C(0) 1.685; 1.700 2=0: 2.730

1. gRoude, AsyStoll, M. Produits à odeur de violette.