DICADINANES AS PENTACYCLIC TRITERPANES OF CRUDE OIL*

N. S. Vorob'yeva, T. I. Pekhk, Z. K. Zemskova and A. A. Petrov

Institute of Geology and Development of Fossil Fuels, Moscow

(Received 13 March 1990)

A new type of saturated pentacyclic triterpanoid of composition C_{30} was described for the first time in [1]. These hydrocarbons are characteristic of the continental crude oils of South East Asia that are produced in the South China Sea, Western Iran and in South Sumatra. The structure of one of the hydrocarbons was subsequently established in [2], where ^{13}C NMR was used to demonstrate that the main hydrocarbon of the given series is so-called dicadinane (II), i.e. a saturated cadinene dimer (III).

The full name of the hydrocarbon is 2,6a,12-trimethyl-4,9-diisopropylperhydrobenzo[de]naphthacene or 6,12,21-trimethyl-8,9-diisopropylpentacyclo[$14,4.0.0^{2,4}1^{4,8}O^{7,12}$]-heneicosane. The structure of the compounds examined is given in scheme 1:

The present work is devoted to an investigation of the composition of dicadinanes in one of the Indian crude oils.

RESULTS AND DISCUSSION

We discovered dicadinanes in a study of crude oil of the South Assam basin.† The biodegraded crude oil lies in Cenozoic deposits at a depth of 350 mm. A chromatogram of the saturated hydrocarbons (b.p. $>200^{\circ}$ C) is given in Fig. 1a. Peaks I-3, belonging, as will be shown below, to cadinane and two epimeric dicadinanes present in a 40:60 ratio, stand out clearly in Fig 1a. As regards the distribution of dicadinanes, the specimen investigated is similar to crude oil A of the South China Sea, described in [1]. It is significant that, besides dicadinanes and a small amount of oleanane, the crude oil examined contains hardly any other pentacyclic triterpanes. The steranes, contained in small concentrations, comprise only C_{29}

- * Neftekhimiya 30, No. 4, 435–439, 1990.
- † The authors are grateful to K. Chandra (India) for providing a specimen of the crude oil.

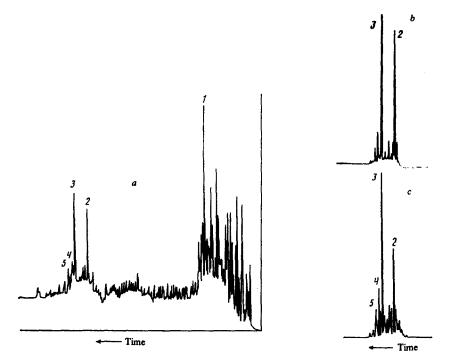


Fig. 1. Chromatograms of saturated hydrocarbons of crude oil of South Assam basin (a) and products of separation of saturated hydrocarbons of >350°C fraction on 10X zeolites (b, c) (different stages of separation).

hydrocarbons, which confirms the participation of higher plants in the genesis of this crude oil. The coefficient of maturation (the ratios of $\beta\beta/(\beta\beta + \alpha)$ -epimers), equal to 0.77, indicates considerable catagenic maturity. The crude oil is also characterized by relatively high concentrations of rearranged steranes. For a more detailed study of structures I and II, a fraction of saturated hydrocarbons (b.p. >350°C) was isolated. Further concentration of hydrocarbons I and II was carried out on 10X zeolites by the method described in [3]. Initially the desired hydrocarbons I and II are eluted (with eluate of structure I predominant in the first portions), and then the petroleum hump. Figure 1b shows chromatograms of mixtures at different stages of this separation. Thus tenfold enrichment of the initial mixture with hydrocarbons I and II made it possible to investigate their structure by means of ¹³C NMR, and also to obtain reliable mass spectra. A study of ¹³C NMR spectra using the procedure described in [3] showed that the spectrum of II is totally identical to the spectrum of standard trans-dicadinane [2]. Experimental data on the chemical shifts for compound I were in satisfactory agreement with calculated values (Table 1). Calculations were carried out with account taken of available published information on the chemical shifts of carbon in cadinane (IV), bicadinane (II), methyldecalins and also trans, trans, trans- and trans, cis, cis-perhydrophenalenes (V), which were synthesized to obtain more precise details on the stereochemistry of the perhydrophenalene ring in dicadinanes (Table 2). Trans,trans,perhydrophenalene was produced by the isomerization of perhydrofluorene over aluminium bromide [4], while trans, cis, cis-epimer was produced by the hydrogenation of phenalene in an autoclave over Raney nickel at 180°C and 10 MPa. All substituents in hydrocarbons I and II (besides angular methyl) have an equatorial orientation. We should point out that, while we

C atom	δ ¹³ C				δ ¹³ C		
	I		l l		I		
	calcu- lation	experi- ment	II experiment	C atom	calcu- lation	experi- ment	II experiment
C-1 C-2 C-3 C-3a C-4 C-5 C-6 C-6a C-7 C-7a C-8 C-9 C-9a C-10	37,8 26,8 40,2 33,5 49,5 19,6 41,3 33,3 38,3 37,3 48,0 44,2 24,3 36,2	37,5 26,2 39,8 33,3 49,0 19,7 41,8 33,7 37,5 37,3 48,1 44,3 24,3 36,2	39,5 31,4 39,5 37,1 49,5 19,1 42,2 33,7 50,4 37,3 37,9 48,0 44,2 24,3 36,2	C-12 C-12a C-13 C-13a C-13a C-13c C-14 C-15 C-16 C-17 C-18 C-19 C-20 C-21	37,9 49,7 34,0 41,0 36,0 50,0 23,0 26,4 15,2 21,6 28,2 26,4 15,2 21,5 20,4	37,9 49,8 34,0 39,6 34,5 51,7 23,3 26,4 15,2 21,6 28,0 26,4 15,2 21,6 20,3	37,9 49,7 34,0 49,5 40,4 54,2 23,3 26,4 21,6 15,2 18,7 26,4 15,2 21,6 20,4

Table 1. 13 C chemical shifts of 2,6*a*,12-trimethyl-4,9-disopropylperhydrobenzo[de]naphthacenes (δ_{TMS})

were carrying out this investigation, it was reported briefly [5] that the second epimer of dicadinane (I) has a *cis*-connection of rings in the perhydrophenalene fragment.

Besides ¹³C NMR spectra we obtained mass spectra of the hydrocarbons investigated on an LKB-2091 mass spectrometer equipped with an LKB-2130 computer system. Chromatographic input was carried out using a glass capillary column with OV-101 (SP-2100) phase. The ionization energy was 70 eV. The mass spectra of hydrocarbons I and II are given in Fig. 2. They turned out to be similar to the mass spectra of compounds published in [1,2]. The mass spectra of I and II differ mainly in the intensity of fragmentary ion (M-15)⁺, which in hydrocarbon I is 100%, but in hydrocarbon II only 10%. This difference can be easily explained, since, unlike the corresponding *trans*-decalin, ion (M-15)⁺ is always maximum in angular-substituted *cis*-decalins [6]. The mass spectra of the compound (peak 4) (Fig. 1c) is identical to the spectrum of dicadinane II, whereas peak 5 consists of equal parts of dicadinane (probably having a different spatial arrangement of substituents) and homodicadinane (i.e. C₃₁ hydrocarbon). In [1], hydrocarbons I and II were labelled with indices W and T respectively. The mass spectrum of cadinane (peak 1 in Fig. 1a) has the following values (intensity (%)):

C atom	Epim	er	C atom	Epimer		
	trans,trans,trans-	trans,cis,cis-		trans,trans,trans-	trans,cis,cis-	
C-1 C-2 C-3 C-3a	34,4 26,0 34,4 41,5	32,7 21,6 36,7 31,1	C-6a C-8 C-9 c	41,5 26,0 53,7	37,3 27,7 45,8	

Table 2. 13 C chemical shifts of Perhydrophenalenes (δ_{TMS})

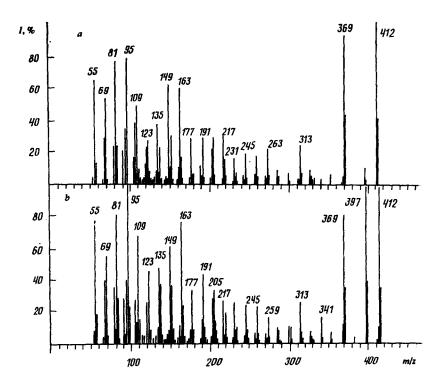


Fig. 2. Mass spectra of dicadinanes: a - II; b - I.

208 (32), 166 (52), 165 (100), 123 (23), 109 (81), 95 (76), 83 (72), 81 (71) and 67 (38). It corresponds to the spectrum of the standard hydrocarbon.

Besides dicadinanes, the octacyclic tricadinane (VIII) of composition C_{45} is also described in [4]; this is a saturated cadinane trimer. Its assumed structure is shown in scheme 2:

On the basis of mass spectra data, this hydrocarbon is absent in the crude oil investigated. Scheme 2 also presents a possible variant (VII) of formation of dicadinane (I and II) from cadinene (III).

In conclusion we shall point out the remarkably low apparent boiling point of the two

epimeric dicadinanes. Thus, hydrocarbons I and II are eluted in the region of C_{27} hopanes. Moreover, at 300°C hydrocarbon I is eluted jointly with C_{29} *n*-alkane. The relative retention times at this temperature (for 17- α -hopane) amount to 0.37 for I and 0.52 for II. The index of retention is 2900 for I and 3020 for II (temperature 300°C, capillary column with Apiezon L).

SUMMARY

Two epimers of saturated pentacyclic triterpane – dicadinane (C_{30}) – have been found in crude oil of the South Assam field (India). The hydrocarbon structure has been established by means of chromato-mass spectrometry and 13 C NMR spectrometry. The hydrocarbons are 2,6a,12-trimethyl-4,9-diisopropylperhydrobenzo[de]naphthacenes and can be regarded as saturated products of bicyclic sesquiterpene (cadinene) dimerization. Mass spectra and 13 C NMR spectra of the compounds investigated have been given.

REFERENCES

- P. GRANTHAM, J. POSTHUMA and A. BAAK, Advances in Organic Geochemistry, Ed. J. Willey, p. 675, Pergamon Press, Oxford, 1983.
- 2. H. COX, J. de LEEUW, P. SCHENCK et al., Nature 319, 316, 1986.
- 3. N. S. VOROB'YEVA, Z. K. ZEMSKOVA, T. I. PEKHK and A. A. PETROV, Neftekhimiya 26, 3, 291, 1986.
- 4. A. A. PETROV, Khimiya naftenov (Chemistry of Naphthenes), p. 283, Nauka, Moscow, 1971.
- 5. **B. AASSEN** and **I. de LEEUW**, Abstracts of 14th International Meeting on Organic Geochemistry, No. 63, Paris, 1989.
- 6. A. A. PETROV, L. S. GOLOVKINA and G. N. RUSINOVA, Mass-spektry neftyanykh uglevodorodov (Mass Spectra of Petroleum Hydrocarbons), p. 310, Nedra, Moscow, 1986.