ТРАНСАННУЛЯРНАЯ ЦИКЛИЗАЦИЯ 3-МЕТИЛ-ЦИС-БИЦИКЛО [4.3.0] НОНА-2,7-ДИЕНА, 3-МЕТИЛ- И 3,4-ДИМЕТИЛ-ЦИС-БИЦИКЛО [4.3.0] НОНА-3,7-ДИЕНОВ. СИНТЕЗ 5-ЗАМЕЩЕННЫХ БРЕКСАНОВ

 $C. \, H. \, A$ нфилогова, $B. \, B. \, H$ игматова, $T. \, H. \, \Pi$ ехк, $H. \, A. \, Б$ еликова, $\mathcal{A}. \, A. \, K$ оптев

Взаимодействие НСООН и СН₃СООН с 3-метил-цис-бицикло[4.3.0]нона-2,7-диеном, 3-метил- и 3,4-диметил-цис-бицикло[4.3.0]нона-3,7-диенами и 3-метил-цис-бицикло- [4.3.0]нон-7-ен-3-олом протекает исключительно с образованием эфиров 1-метил- или 1,9-диметил-экзо-брексан-5-ола с выходом 80—90%. Реакция может служить удобным препаративным методом синтеза 5-замещенных брексанов.

Ранее было обнаружено, что при взаимодействии НСООН или СН₃СООН (в присутствии катализатора) с цис-бицикло [4.3.0] нона-3,7-диеном (I) образуется до 15% трициклических соединений ряда брексана [1], которые до последнего времени остаются труднодоступными и получены только путем многостадийных синтезов [2]. Образование трициклических эфиров свидетельствует о трансаннулярном взаимодействии карбокатионного центра, образующегося при протонировании одной из двух двойных связей, со второй двойной связью, выступающей в качестве внутреннего нуклеофила. Анализ всех возможных направлений замыкания третьего цикла показывает, что наиболее вероятно образование связи ${
m C}^3-{
m C}^7.$ Представляло интерес исследовать поведение в этой реакции диенов аналогичного строения, но содержащих в положении С³ метильную группу. Введение последней должно увеличить стабильность промежуточно образующегося карбокатиона и могло сказаться на стереохимии переходного состояния, а следовательно, оказать влияние на направление протекания реакции.

В настоящей работе исследовано присоединение НСООН и СН₃СООН (в присутствии ВF₃) к 3-метил-цис-бицикло [4.3.0] нона-2,7-диену (II), 3-метил-(III) и 3,4-диметил-цис-бицикло [4.3.0] нона-3,7-диенам (IV). Диен (IV) был синтезирован и охарактеризован ранее [3]. Синтез смеси углеводородов (II) и (III) осуществляли исходя из диена (I) путем оксимеркурирования—демеркурирования с последующим окислением [4], введением полученной смеси кетонов в реакцию Гриньяра и последующей дегидратацией смеси спиртов.

Обращает на себя внимание преимущественное образование диена (II) при дегидратации цис- и транс-3-метил-цис-бицикло [4.3.0] нон-7-ен-3-олов (VIIa, б) насыщенным водным раствором щавелевой кислоты. Возможно, что это обусловлено большей подвижностью атомов водорода при C^2 , находящемся между двумя третичными атомами углерода.

В реакцию с HCOOH и CH₃COOH вводили диен (IV) и смесь диенов (II, IX), которая более чем на 80% состояла из первых двух углеводородов,

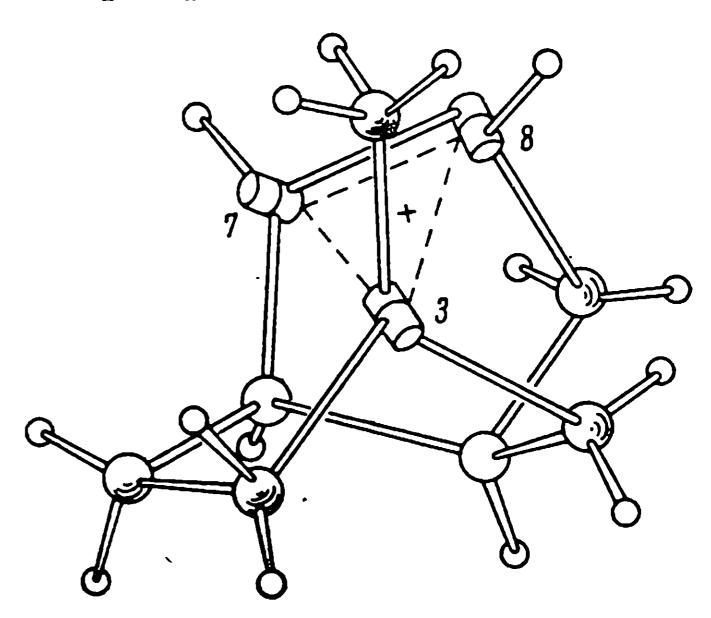
при протонировании которых должен был образоваться один и тот же карбокатион. Присоединение НСООН к диенам проводили при 85 °C, СН₃СООН (в присутствии каталитических количеств ВГ₃) — при комнатной температуре, интенсивном перемешивании и мольном соотношении реагентов 10:1.

При времени контакта 6 ч протекало практически полное превращение углеводородов в формиаты или ацетаты 1-метил-(X) или 1,9-диметил-(XIa, б)брексан-5-ола. Выход полученных эфиров составлял 80—90%, чистота, по данным ГЖХ, 96—98%. Эфиры (X, XI) представляли собой экзо-изомеры, содержащие лишь 1—3% примеси изомеров с эндо-ориентацией RCOO группы, т. е. стереоселективность реакции близка к 100%.

Пути образования возможных продуктов реакции представлены на схеме.

Для катионов* А и Б, образующихся при протонировании диенов (II, III, IV), возможно несколько путей превращения. Из экспериментально полученных данных следует, что в условиях реакции избирательно осуществляется только путь a, при котором карбокатионный центр катиона А взаимодействует с двойной связью пятичленного цикла и происходит образование переходного состояния B, в котором сближены атомы углерода C^3 , C^7 и C^8 . Трансаннулярное замыкание связи C^3 — C^7 в последнем и присоединение внешнего нуклеофила $RCOO^-$ (путь ∂) приводят исключительно к трициклическим эфирам со структурой брексана (X, XIa, б).

Замыкание связи C^3-C^8 (путь e) в условиях опыта не реализуется (как и путь δ); возможно, это связано с тем, что в этом случае должна образоваться более напряженная по сравнению со структурой брексана


^{*} Обсуждаются превращения наиболее стабильных третичных катионов.

структура твист-брендана [5]. Прямое образование эфиров третичных спиртов (пути в и г), по-видимому, затруднено стерически и также не реализуется.

Из рассмотрения моделей диенов (I, II, III и IV) и соответствующих карбокатионов видно, что, несмотря на то что двойные связи в них находятся в разных циклах, они сближены в пространстве и могут оказывать

взаимное влияние. Максимальное сближение атомов С³, С⁷ и С⁸ (см. рисунок) благоприятствует образованию переходного состояния В, в котором происходит замыкание связи С³—С⁷. СН₃ группа в положении С³ препятствует атаке образовавшегося иона с эндо-стороны, что способствует исключительной экзо-атаке нуклеофила.

Следует отметить, что примесь 15% диена (IX) не оказывала влияния на протекание реакции. Более того, углеводород (IX) регенерируется не-измененным. Это, по-видимому, можно объяснить тем, что образование связи C^3-C^8 или эфира третичного спирта маловероятно в силу обсужден-

3-Метил-цис-бицикло[4.3.0]нон-7-ен 3-ил-катион.

ных выше причин, и равновесная реакция образования карбокатиона смещена в сторону исходного диена (IX).

Интересно отметить, что если вводить в реакцию с НСООН не диены (II) и (III), а 3-метил-цис-бицикло [4.3.0] нон-7-ен-3-ол (VIIa, б), то с выходом 78% также получается экзо-формиат (X) с примесью 2% эндо-изомера. Это свидетельствует в пользу того, что взаимодействие НСООН со спиртом (VII) протекает через образование такого же иона карбония, который возникает при протонировании диенов (II) и (III), т. е. путь превращения иона А не зависит от способа его генерации.

Таким образом, найдено, что поведение метил- и диметилзамещенных диенов (II—IV) существенно отличается от поведения диена (I). При вза-имодействии диена (I) с HCOOH и CH_3COOH образуются смеси экзо- и эндо-формиатов или ацетатов брексан-5-ола в соотношении $2:1\ [^1]$, тогда как реакция диенов (II—IV) с кислотами протекает стереоселективно. Другое отличие заключается в том, что диены (II—IV) и спирт (VII), содержащие CH_3 группу у атома C^3 , претерпевают исключительно трансаннулярную циклизацию, тогда как из диена (I) образуются преимущественно эфиры ряда бициклононенолов $[^1]$.

Изученная реакция может служить удобным препаративным методом синтеза эфиров 1-метил- и 1,9-диметилбрексан-5-олов. Строение полученных в работе соединений доказано изучением спектров ЯМР ¹³С (см. таблицу), ИК, КРС и масс-спектров, а также химическими превращениями. Эфиры (X, XI) путем последовательного гидролиза и окисления были переведены в соответствующие кетоны (XII, XIII) и охарактеризованы спектральными методами.

$$X, XIa,6$$

HO

CH₃

XII, XIII a, 6

XII, R = H; XIIIa,6, $R = CH_3$.

Сам факт образования кетонов из эфиров свидетельствует о том, что исходные соединения — эфиры вторичных спиртов, что является косвенным доказательством трициклического строения последних.

Следует отметить, что на хроматограмме кетонов (XIIIa, б) имеются два пика, которые соответствуют изомерам с экзо- и эндо-расположением метильных групп у С⁹. Это свидетельствует в пользу того, что исходное вещество, на хроматограмме которого также два пика, является смесью ацетатов экзо- и эндо-1,9-диметилбрексан-экзо-5-олов (XIa, б), что было подтверждено данными ЯМР ¹³С.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹³С измерены на приборе WH-90 при частоте 22.6 МГц с накоплением и Фурье-преобразованием сигнала с использованием миниЭВМ ВNС-12. В качестве растворителя использован CDCl₃. В нескольких случаях измерялись спектры смесей структурных и пространственных изомеров. Величины химических сдвигов исследованных соединений приведены в таблице. Приведенные в таблице отнесения вытекают из химических сдвигов производных бицикло [4.3.0] нонана и брексана [1], а также из эффектов заместителей в производных бицикло [2.2.1] гептана, исследованных нами ранее с целью определения конфигурации полученных соединений.

 Γ ЖХ анализ исследованных веществ проводили на хроматографах Цвет-1, ЛХМ-8-МД и Хром-5 с пламенно-ионизационным детектором на капиллярных колонках $50~000\times0.25$ мм, Π Э Γ -6000 и Apiezon-L — в качестве неподвижной фазы.

Цис-бицикло̂[4.3.0] нона-3,7-диен (I) выделен ректификацией на колонке из технического продукта. Использовали фракцию с т. кип. 75.0—75.7 °C (47 мм рт. ст.), n_p^{20} 1.4978, содержащую 99% соединения (I).

Оксимеркурирование—демеркурирование диена (I) проводили в водном $T\Gamma\Phi$ [4]. 22.0 г $Hg(OAc)_2$ перемешивали в течение 30 мин с 12 мл H_2O и 80 мл $T\Gamma\Phi$, быстро добавляли 6.7 г диена (I) в 8 мл $T\Gamma\Phi$, через 2 ч приливали 50 мл 3 н. раствора NaOH, охлаждали и добавляли 50 мл 0.5 М. раствора NaBH4 в 3 н. растворе NaOH. После экстракции, высушивания и разгонки выделили 15 г смеси цис-бициклононенолов с т. кип. 93—96 °C (8 мм рт. ст.), n_p^{20} 1.5064. Выход (на прореагировавший диен) 85%. Окислением 4.22 г спиртов бихроматом натрия в серной кислоте по методу Брауна [6] получили 2.78 г смеси 85% цисбицикло [4.3.0] нон-7-ен-3-она (V) и 15% цис-бицикло [4.3.0] нон-3-ен-8-она (VI) с т. кип. 88—90 °C (8 мм рт. ст.), n_p^{20} 1.4985. Выход 66%.

3-Метил-цис-бицикло [4.3.0] нон-7-ен-3-ол (VIIa, б) в смеси с 8-метил-цис-бицикло [4.3.0] нон-3-ен-8-олом (VIII) получен при взаимодействии 5.34 г смеси кетонов (V) и (VI) с CH_3MgI (из 1 г магния и 6.8 г CH_3I). После обработки и разгонки выделены третичные спирты (VII) и (VIII) с т. кип. 91 °C (8 мм рт. ст.), n_p^{20} 1.5011, с содержанием 49% транс-3-метил-цис-бицикло [4.3.0] нон-7-ен-цис-3-ола (VIIa), 36% цис-3-метил-цис-бицикло [4.3.0] нон-7-ен-транс-3-ола (VIIб) и 15% цис-8-метил-цис-бицикло [4.3.0] нон-3-ен-транс-8-ола (VIII).

3 - Метил-цис-бицикло[4.3.0] нона - 2,7 - диен (II) и 3 - метил-цис-бицикло [4.3.0] нона -3,7 - диен (III) полу-

Химические сдвиги ядер ¹³С исследованных соединений (8, м. д., в сторону слабого поля от ТМС)

Соединение	\mathbf{G}^{1}	C ²	C ₃	G ⁴	G ⁵	G_{Q}	C ⁷	G ₈	$G_{\mathbf{\partial}}$	GH_3	CH ₃
3-Метил-цис-бицикло[4.3.0]нона-2,7-диен (II)	42.7	124.8	133.7	28.4	26.2	38.0	135.3	130.0	39.2	24.0	
8-Метил-цис-бицикло[4.3.0]нона-3,7-диен (IX)	36.0	29.0	128.4	128.1	28.0	43.2	129.5	139.2	44.6	16.7	
3,4-Диметил-цис-бицикло[4.3.0]нона-3,7- диен (IV)	36.4	35.9	126.6	126.4	35.0	44.4	135.4	129.5	40.4	19.4	19.6
3-Метил-цис-бицикло[4.3.0]нон-7-еп-транс- 3-ол (VIIa)	33.8	40.9	69.9	34.8	22.8	43.2	135.0	130.1	39.9	31.5	_
3-Метил-цис-бицикло[4.3.0]нон-7-ен-цис- 3-ол (VIIб)	36.6	41.9	69.0	36.6	25.2	43.1	135.0	130.1	39.6	26.5	_
8-Метил-цис-бицикло 4.3.0 пон-3-ен-цис- 8-ол (VIII)	35.6	27.1	126.0	126.0	27.1	-35.6	48.0	78.3	48.0	31.3	
Формиат 1-метилбрексан-экзо-5-ола (Х) а	42.9	39.5	41.6	41.8	73.3	55.9	46.1	21.8	38.9	17.9	
Ацетат эндо-1,9-диметилбрексан-экзо-5-ола (Xla) б	45.4	31.0	41.6	42.5	73.6	58.3	45.1	31.2	42.6	16.3	12.1 (эндо)
Ацетат экзо-1,9-диметилбрексан-экзо-5-ола (ХІб) б	45.4	42.1	41.3	42.6	74.0	52.1	45.7	31.9	43.5	15.5	16.5 (экзо)
1-Метилбрексан-5-он (XII)	46.9	38.8	39.7	47.3	216.8	64.4	50.0	23.8	39.9	19.0	<u> </u>
Эндо-1,9-диметилбрексан-5-он (XIIIa)	49.3	31.4	40.6	48.2	216.5	66.7	48.8	32.7	42.5	17.5	11.9 (эндо)
Экзо-1,9-диметилбрексан-5-он (XIIIб)	49.4	41.9	39.5	48.3	217.2	60.5	49.4	33.7	44.0	16.5	18.4 (экзо)

¹¹ римечание. ^а Химический сдвиг формильной группы 160.6 м. д. ^б Химические сдвиги ацетильной группы 170.3 (СО), 21.2 (СН₃) м. д.

чили дегидратацией 1.88 г смеси третичных спиртов (VII, VIII) насыщенным водным раствором щавелевой кислоты. После обработки и разгонки выделено 0.88 г смеси углеводородов (II, III, IX), содержащей 75% (II), 10% (III) и 15% (IX), с т. кип. 62.5—63 °C (8 мм рт. ст.), n_{p}^{20} 1.4941. Выход 53%. Спектр КРС: 1610, 1650, 1673 (С=С) см⁻¹.

Взаимодействие НСООН и СН3СООН с углеводородами (II,III,IV, IX) и спиртом (VII) проводили в атмосфере аргона при интенсивном перемешивании, периодически отбирая пробы. Последние разлагали водой, экстрагировали эфиром и после обработки и высушивания анализировали методом ГЖХ. a. Смесь 2.5 г диенов (II, III, IX) и 2 мл 99.7%-ной НСООН нагревали при 85°C 6 ч. После разгонки выделено 2.2 г формиата 1-метилбрексан-экзо-5-ола (X). Выход 80%. Т. кип. 93— 94 °C (7 MM pt. ct.), n_n^{20} 1.4820.

 δ . Смесь 1.86 г диена (IV) и 10 мл ледяной СН₃СООН, содержащей 4.5 % ВГ3, перемешивали при комнатной температуре 6 ч. После обработки и разгонки выделено 2.33 г ацетатов эндо- и экзо-1,9-диметилбрексанэкзо-5-ола (XIa, б) с т. кип. 138.5—139 °C (7 мм рт. ст.), n_n^{20} 1.4760. Выход 90%. По данным ГЖХ и ЯМР 13С, ацетаты представляли собой смесь двух пространственных изомеров (ХІа, б), отличающихся экзо- и эндоориентацией СН₃ группы у атома С⁹, с незначительным преобладанием последнего.

в. Смесь 3.1 г 3-метил-цис-бицикло [4.3.0] нон-7-ен-3-ола (VII) и 10 мл HCOOH нагревали при 85 °C 6 ч. После обработки и разгонки выделили 2.68 г формиата 1-метилбрексан-экзо-5-ола (X) с т. кип. 93-94 °C (7 мм

рт. ст.), n_n^{20} 1.4820. Выход 73%, чистота 97%.

1 - Метилбрексан - 5 - он (XII) получили из 2.17 гформиата (X) при восстановлении 0.38 г LiAlH₄ и последующем окислении смесью Na₂Cr₂O₇ с H₂SO₄. Выделено 1.18 г (65%) кетона (XII), т. кип. 83.5—85 °C (8 мм рт. ст.), n_n^{20} 1.4930, т. пл. 46.2—46.8 °C. ИК спектр: 1751 (C=O) см⁻¹. Найдено %: С 79.83, 79.96; Н 9.40, 9.55. $C_{10}H_{14}O$. Вычислено %: С 79.95; H 9.39. M^+ 150.

1,9 - Диметилбрексан - 5 - он (XIIIa, б) получили из 1.65 г ацетатов (ХІа, б) гидролизом спиртовым раствором КОН и последующим окислением образовавшегося спирта. После разгонки в вакууме выделили 0.85 г изомерных кетонов (XIIIa, б) с т. кип. 96 °С (8 мм рт. ст.), n_n^{20} 1.4904. Выход 66%. ИК спектр: 1745 (C=O) см⁻¹. Найдено %: С 80.00; Н 10.37. С₁₁Н₁₆О. Вычислено %: С 80.44; Н 9.82.

Литература

[1] Бобылева А. А., Беликова Н. А., Баранова С. В., Арбузов В. А., Пехк T. И., Платэ A. Φ . — \mathcal{H} OpX, 1981, т. 17, с. 1333; Беликова H. A., Aрбузов B. A., Пехк Т. И., Бобылева А. А., Платэ А. Ф. — ЖОрХ, 1981, т. 17, с. 2457; Арбузов B. A., Геворкян $\Gamma. \Gamma.$, Пехк T. M., Бобылева A. A., Беликова H. A. — HOpX , т. 20, вып. 6, с. 1226—1237.

[2] Nickon A., Weglein R. C., Mathew C. T. — Canad. J. Chem., 1981, vol. 59, p. 302.

[3] Платэ $A. \Phi.$, Беликова H. A. — ЖОХ, 1960, т. 30, с. 3953.

[4] Арбузов В. А., Пехк Т. И., Беликова Н. А., Бобылева А. А., Платэ А. Ф. — $\Re \operatorname{OpX}$, 1983, т. 19, с. 310.

[5] Engler E. M., Andose J. D., Schleyer P. R. — J. Am. Chem. Soc., 1973, vol. 95, p. 8005.

[6] Brown H. C., Gang C. P., Liu K. — J. Org. Chem., 1971, vol. 36, p. 387.

Московский государственный университет имени М. В. Ломоносова Институт химической и биологической физики Академии наук Эстонской ССР

Поступило 15 IX 1983